Análise do escoamento turbulento em meio poroso descontínuo.

Detalhes bibliográficos
Autor(a) principal: Marcos Heinzelmann Junqueiras Pedras
Data de Publicação: 2000
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2357
Resumo: Este trabalho analisa a modelagem do fenômeno de turbulência em meios porosos. Inicialmente, é apresentado o conceito da dupla decomposição, o qual relaciona uma propriedade microscópica instantânea às suas médias volumétrica e temporal. Baseado no conceito de dupla decomposição, no teorema da média volumétrica local e nas equações de escoamento microscópicas, desenvolve-se as equações macroscópicas do escoamento médio no tempo, aplicáveis a meios limpos, porosos ou híbridos. Mostra-se que a ordem de aplicação da média volumétrica e temporal é irrelevante quanto ao resultado final se o meio poroso for indeformável e saturado por um fluido monofásico. No processo de obtenção das equações macroscópicas do escoamento médio no tempo, surge o tensor de Reynolds macroscópico. A representação deste termo adicional faz uso da idéia da dupla decomposição e dá origem ao modelo macroscópico de duas equações proposto. Esta proposição é baseada na média volumétrica das equações microscópicas da energia cinética turbulenta e de sua dissipação, ambas definidas também à luz do conceito de dupla decomposição. Deste processo de obtenção do modelo macroscópico de duas equações, uma constante é introduzida na equação da energia cinética de turbulência. O valor numérico desta constante foi obtido através de experimentação numérica aplicada a um meio poroso formado por hastes cilíndricas com arranjo espacialmente periódico. As equações microscópicas do escoamento foram então resolvidas para esta geometria, usando-se um sistema de coordenadas generalizadas e o modelo k-e de baixo Re. No modelo de baixo Re, não há a necessidade de emprego da função de parede e a malha computacional se comprime próxima à superfície sólida. As propriedades distribuídas foram integradas no domínio de cálculo e comparadas com o modelo macroscópico proposto. Desta comparação, o valor da constante introduzida foi determinado. O modelo macroscópico de turbulência, assim ajustado, foi usado para reproduzir dados encontrados na literatura. Algumas aplicações do modelo macroscópico envolvendo meios de distintas porosidades são apresentadas.
id ITA_4510bd62d00e339f7adeb30b87c811d5
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2357
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Análise do escoamento turbulento em meio poroso descontínuo.Escoamento turbulentoMateriais porososMecânica dos fluidosAnálise numéricaFísicaEste trabalho analisa a modelagem do fenômeno de turbulência em meios porosos. Inicialmente, é apresentado o conceito da dupla decomposição, o qual relaciona uma propriedade microscópica instantânea às suas médias volumétrica e temporal. Baseado no conceito de dupla decomposição, no teorema da média volumétrica local e nas equações de escoamento microscópicas, desenvolve-se as equações macroscópicas do escoamento médio no tempo, aplicáveis a meios limpos, porosos ou híbridos. Mostra-se que a ordem de aplicação da média volumétrica e temporal é irrelevante quanto ao resultado final se o meio poroso for indeformável e saturado por um fluido monofásico. No processo de obtenção das equações macroscópicas do escoamento médio no tempo, surge o tensor de Reynolds macroscópico. A representação deste termo adicional faz uso da idéia da dupla decomposição e dá origem ao modelo macroscópico de duas equações proposto. Esta proposição é baseada na média volumétrica das equações microscópicas da energia cinética turbulenta e de sua dissipação, ambas definidas também à luz do conceito de dupla decomposição. Deste processo de obtenção do modelo macroscópico de duas equações, uma constante é introduzida na equação da energia cinética de turbulência. O valor numérico desta constante foi obtido através de experimentação numérica aplicada a um meio poroso formado por hastes cilíndricas com arranjo espacialmente periódico. As equações microscópicas do escoamento foram então resolvidas para esta geometria, usando-se um sistema de coordenadas generalizadas e o modelo k-e de baixo Re. No modelo de baixo Re, não há a necessidade de emprego da função de parede e a malha computacional se comprime próxima à superfície sólida. As propriedades distribuídas foram integradas no domínio de cálculo e comparadas com o modelo macroscópico proposto. Desta comparação, o valor da constante introduzida foi determinado. O modelo macroscópico de turbulência, assim ajustado, foi usado para reproduzir dados encontrados na literatura. Algumas aplicações do modelo macroscópico envolvendo meios de distintas porosidades são apresentadas. Instituto Tecnológico de AeronáuticaMarcelo José Santos de LemosMarcos Heinzelmann Junqueiras Pedras2000-00-00info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2357reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:46Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2357http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:56.382Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Análise do escoamento turbulento em meio poroso descontínuo.
title Análise do escoamento turbulento em meio poroso descontínuo.
spellingShingle Análise do escoamento turbulento em meio poroso descontínuo.
Marcos Heinzelmann Junqueiras Pedras
Escoamento turbulento
Materiais porosos
Mecânica dos fluidos
Análise numérica
Física
title_short Análise do escoamento turbulento em meio poroso descontínuo.
title_full Análise do escoamento turbulento em meio poroso descontínuo.
title_fullStr Análise do escoamento turbulento em meio poroso descontínuo.
title_full_unstemmed Análise do escoamento turbulento em meio poroso descontínuo.
title_sort Análise do escoamento turbulento em meio poroso descontínuo.
author Marcos Heinzelmann Junqueiras Pedras
author_facet Marcos Heinzelmann Junqueiras Pedras
author_role author
dc.contributor.none.fl_str_mv Marcelo José Santos de Lemos
dc.contributor.author.fl_str_mv Marcos Heinzelmann Junqueiras Pedras
dc.subject.por.fl_str_mv Escoamento turbulento
Materiais porosos
Mecânica dos fluidos
Análise numérica
Física
topic Escoamento turbulento
Materiais porosos
Mecânica dos fluidos
Análise numérica
Física
dc.description.none.fl_txt_mv Este trabalho analisa a modelagem do fenômeno de turbulência em meios porosos. Inicialmente, é apresentado o conceito da dupla decomposição, o qual relaciona uma propriedade microscópica instantânea às suas médias volumétrica e temporal. Baseado no conceito de dupla decomposição, no teorema da média volumétrica local e nas equações de escoamento microscópicas, desenvolve-se as equações macroscópicas do escoamento médio no tempo, aplicáveis a meios limpos, porosos ou híbridos. Mostra-se que a ordem de aplicação da média volumétrica e temporal é irrelevante quanto ao resultado final se o meio poroso for indeformável e saturado por um fluido monofásico. No processo de obtenção das equações macroscópicas do escoamento médio no tempo, surge o tensor de Reynolds macroscópico. A representação deste termo adicional faz uso da idéia da dupla decomposição e dá origem ao modelo macroscópico de duas equações proposto. Esta proposição é baseada na média volumétrica das equações microscópicas da energia cinética turbulenta e de sua dissipação, ambas definidas também à luz do conceito de dupla decomposição. Deste processo de obtenção do modelo macroscópico de duas equações, uma constante é introduzida na equação da energia cinética de turbulência. O valor numérico desta constante foi obtido através de experimentação numérica aplicada a um meio poroso formado por hastes cilíndricas com arranjo espacialmente periódico. As equações microscópicas do escoamento foram então resolvidas para esta geometria, usando-se um sistema de coordenadas generalizadas e o modelo k-e de baixo Re. No modelo de baixo Re, não há a necessidade de emprego da função de parede e a malha computacional se comprime próxima à superfície sólida. As propriedades distribuídas foram integradas no domínio de cálculo e comparadas com o modelo macroscópico proposto. Desta comparação, o valor da constante introduzida foi determinado. O modelo macroscópico de turbulência, assim ajustado, foi usado para reproduzir dados encontrados na literatura. Algumas aplicações do modelo macroscópico envolvendo meios de distintas porosidades são apresentadas.
description Este trabalho analisa a modelagem do fenômeno de turbulência em meios porosos. Inicialmente, é apresentado o conceito da dupla decomposição, o qual relaciona uma propriedade microscópica instantânea às suas médias volumétrica e temporal. Baseado no conceito de dupla decomposição, no teorema da média volumétrica local e nas equações de escoamento microscópicas, desenvolve-se as equações macroscópicas do escoamento médio no tempo, aplicáveis a meios limpos, porosos ou híbridos. Mostra-se que a ordem de aplicação da média volumétrica e temporal é irrelevante quanto ao resultado final se o meio poroso for indeformável e saturado por um fluido monofásico. No processo de obtenção das equações macroscópicas do escoamento médio no tempo, surge o tensor de Reynolds macroscópico. A representação deste termo adicional faz uso da idéia da dupla decomposição e dá origem ao modelo macroscópico de duas equações proposto. Esta proposição é baseada na média volumétrica das equações microscópicas da energia cinética turbulenta e de sua dissipação, ambas definidas também à luz do conceito de dupla decomposição. Deste processo de obtenção do modelo macroscópico de duas equações, uma constante é introduzida na equação da energia cinética de turbulência. O valor numérico desta constante foi obtido através de experimentação numérica aplicada a um meio poroso formado por hastes cilíndricas com arranjo espacialmente periódico. As equações microscópicas do escoamento foram então resolvidas para esta geometria, usando-se um sistema de coordenadas generalizadas e o modelo k-e de baixo Re. No modelo de baixo Re, não há a necessidade de emprego da função de parede e a malha computacional se comprime próxima à superfície sólida. As propriedades distribuídas foram integradas no domínio de cálculo e comparadas com o modelo macroscópico proposto. Desta comparação, o valor da constante introduzida foi determinado. O modelo macroscópico de turbulência, assim ajustado, foi usado para reproduzir dados encontrados na literatura. Algumas aplicações do modelo macroscópico envolvendo meios de distintas porosidades são apresentadas.
publishDate 2000
dc.date.none.fl_str_mv 2000-00-00
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2357
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2357
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Escoamento turbulento
Materiais porosos
Mecânica dos fluidos
Análise numérica
Física
_version_ 1706809284060250112