Thermodynamic analysis of gas turbine cycle using inlet air cooling methods

Detalhes bibliográficos
Autor(a) principal: Ana Paula Pereira dos Santos
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024
Resumo: This work focuses on a comparative analysis among three compressor inlet air cooling techniques using a thermodynamic approach to simulate the gas turbine cycle. Firstly, a Base Case is tested to determine the gas turbine performance without any cooling method. The effect of site altitude on the power output gas turbine even without any cooling technique is also simulated. After, the evaporative cooling, absorption and mechanical refrigeration chillers are studied under different ambient temperature and relative humidity. Results showed that the cooling potential of the evaporative system is dependent of its effectiveness, while the absorption chiller cooling load is determined by pre-established compressor inlet air temperature. For the mechanical chiller method, however, it is necessary also to consider the power demand required by the vapour refrigerant compression. It is important to observe that although the absorption chiller has been the more suitable cooling method, it is only a realizable solution if the exhaust gases heat are available and with adequate discharge temperature. Furthermore, the gas turbine analysis is carried out at two brazilian locations: Campos/RJ and Goiania/GO. The monthly power output gain offered by the evaporative cooling method is low due to its intrinsic limitation, the ambient wet-bulb temperature. Further, the mechanical chiller system provided a considerable improvement in power output monthly results. However, the best power output increment is reached when the absorption chiller system is employed. Besides, a preliminary economic analysis showed that evaporative cooling offered the lowest unit electric energy cost, but associated with the lesser incremental power generation potential. On the other hand, the chillers systems are more expensive, while provide larger values of incremental electric energy. Results also showed that the cooling techniques allow obtaining a considerable increase in power generation with a lower cost in comparison with the gas turbine plant without any cooling method.
id ITA_4b9ce977ba99de171a489d4c0165ab6f
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2024
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Thermodynamic analysis of gas turbine cycle using inlet air cooling methodsTurbinas a gásResfriamento por evaporaçãoSistemas de refrigeraçãoTermodinâmicaEngenharia mecânicaThis work focuses on a comparative analysis among three compressor inlet air cooling techniques using a thermodynamic approach to simulate the gas turbine cycle. Firstly, a Base Case is tested to determine the gas turbine performance without any cooling method. The effect of site altitude on the power output gas turbine even without any cooling technique is also simulated. After, the evaporative cooling, absorption and mechanical refrigeration chillers are studied under different ambient temperature and relative humidity. Results showed that the cooling potential of the evaporative system is dependent of its effectiveness, while the absorption chiller cooling load is determined by pre-established compressor inlet air temperature. For the mechanical chiller method, however, it is necessary also to consider the power demand required by the vapour refrigerant compression. It is important to observe that although the absorption chiller has been the more suitable cooling method, it is only a realizable solution if the exhaust gases heat are available and with adequate discharge temperature. Furthermore, the gas turbine analysis is carried out at two brazilian locations: Campos/RJ and Goiania/GO. The monthly power output gain offered by the evaporative cooling method is low due to its intrinsic limitation, the ambient wet-bulb temperature. Further, the mechanical chiller system provided a considerable improvement in power output monthly results. However, the best power output increment is reached when the absorption chiller system is employed. Besides, a preliminary economic analysis showed that evaporative cooling offered the lowest unit electric energy cost, but associated with the lesser incremental power generation potential. On the other hand, the chillers systems are more expensive, while provide larger values of incremental electric energy. Results also showed that the cooling techniques allow obtaining a considerable increase in power generation with a lower cost in comparison with the gas turbine plant without any cooling method.Instituto Tecnológico de AeronáuticaMarcelo AssatoCláudia Regina de AndradeAna Paula Pereira dos Santos2012-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:03:48Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2024http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:02.394Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
title Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
spellingShingle Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
Ana Paula Pereira dos Santos
Turbinas a gás
Resfriamento por evaporação
Sistemas de refrigeração
Termodinâmica
Engenharia mecânica
title_short Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
title_full Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
title_fullStr Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
title_full_unstemmed Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
title_sort Thermodynamic analysis of gas turbine cycle using inlet air cooling methods
author Ana Paula Pereira dos Santos
author_facet Ana Paula Pereira dos Santos
author_role author
dc.contributor.none.fl_str_mv Marcelo Assato
Cláudia Regina de Andrade
dc.contributor.author.fl_str_mv Ana Paula Pereira dos Santos
dc.subject.por.fl_str_mv Turbinas a gás
Resfriamento por evaporação
Sistemas de refrigeração
Termodinâmica
Engenharia mecânica
topic Turbinas a gás
Resfriamento por evaporação
Sistemas de refrigeração
Termodinâmica
Engenharia mecânica
dc.description.none.fl_txt_mv This work focuses on a comparative analysis among three compressor inlet air cooling techniques using a thermodynamic approach to simulate the gas turbine cycle. Firstly, a Base Case is tested to determine the gas turbine performance without any cooling method. The effect of site altitude on the power output gas turbine even without any cooling technique is also simulated. After, the evaporative cooling, absorption and mechanical refrigeration chillers are studied under different ambient temperature and relative humidity. Results showed that the cooling potential of the evaporative system is dependent of its effectiveness, while the absorption chiller cooling load is determined by pre-established compressor inlet air temperature. For the mechanical chiller method, however, it is necessary also to consider the power demand required by the vapour refrigerant compression. It is important to observe that although the absorption chiller has been the more suitable cooling method, it is only a realizable solution if the exhaust gases heat are available and with adequate discharge temperature. Furthermore, the gas turbine analysis is carried out at two brazilian locations: Campos/RJ and Goiania/GO. The monthly power output gain offered by the evaporative cooling method is low due to its intrinsic limitation, the ambient wet-bulb temperature. Further, the mechanical chiller system provided a considerable improvement in power output monthly results. However, the best power output increment is reached when the absorption chiller system is employed. Besides, a preliminary economic analysis showed that evaporative cooling offered the lowest unit electric energy cost, but associated with the lesser incremental power generation potential. On the other hand, the chillers systems are more expensive, while provide larger values of incremental electric energy. Results also showed that the cooling techniques allow obtaining a considerable increase in power generation with a lower cost in comparison with the gas turbine plant without any cooling method.
description This work focuses on a comparative analysis among three compressor inlet air cooling techniques using a thermodynamic approach to simulate the gas turbine cycle. Firstly, a Base Case is tested to determine the gas turbine performance without any cooling method. The effect of site altitude on the power output gas turbine even without any cooling technique is also simulated. After, the evaporative cooling, absorption and mechanical refrigeration chillers are studied under different ambient temperature and relative humidity. Results showed that the cooling potential of the evaporative system is dependent of its effectiveness, while the absorption chiller cooling load is determined by pre-established compressor inlet air temperature. For the mechanical chiller method, however, it is necessary also to consider the power demand required by the vapour refrigerant compression. It is important to observe that although the absorption chiller has been the more suitable cooling method, it is only a realizable solution if the exhaust gases heat are available and with adequate discharge temperature. Furthermore, the gas turbine analysis is carried out at two brazilian locations: Campos/RJ and Goiania/GO. The monthly power output gain offered by the evaporative cooling method is low due to its intrinsic limitation, the ambient wet-bulb temperature. Further, the mechanical chiller system provided a considerable improvement in power output monthly results. However, the best power output increment is reached when the absorption chiller system is employed. Besides, a preliminary economic analysis showed that evaporative cooling offered the lowest unit electric energy cost, but associated with the lesser incremental power generation potential. On the other hand, the chillers systems are more expensive, while provide larger values of incremental electric energy. Results also showed that the cooling techniques allow obtaining a considerable increase in power generation with a lower cost in comparison with the gas turbine plant without any cooling method.
publishDate 2012
dc.date.none.fl_str_mv 2012-02-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Turbinas a gás
Resfriamento por evaporação
Sistemas de refrigeração
Termodinâmica
Engenharia mecânica
_version_ 1706809278264770560