A numerical study on shock wave - boundary layer interaction flows

Detalhes bibliográficos
Autor(a) principal: Rafael Fontes Vieira
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2883
Resumo: This thesis addresses the important problem of shock wave--boundary layer interaction (SBLI) flows for aerospace engineering applications. Moreover, the work emphasizes the need for high fidelity simulations for the appropriate treatment of such flows. In this context, RANS solvers appear as a cost effective CFD approach. Therefore, the present work conducts studies in such a way to identify and to understand limitations, strengths and capabilities of RANS simulations for SBLI flows. Since turbulence modeling is an important issue on the accuracy of such simulations, the efforts here are concentrated on assessing the capabilities of several models that range from linear eddy-viscosity models (EVM) to Reynolds-stress closures (RSM). It would be expected that a RSM-type model could provide better solutions for a 3-D turbulent boundary layer under the action of high adverse pressure gradients, once such models allow for anisotropy between the Reynolds stress components. In order to achieve such goals, the configurations presented at the 2010 AIAA SBLI Workshop are chosen as the current test cases. Such test cases deal with high speed flows and very complex phenomena, including boundary layer separation. Meshes, composed of hexahedral and wedge elements, have been built. Mesh refinement and grid convergence studies are performed in order to identify a grid with a good compromise between accuracy and computational cost. In any event, even using the baseline grids, the present work has found that the computations are considerably expensive. Several simulations are presented for the test cases. Although no turbulence model has remarkably shown an outstanding performance over the others, the present work indicates that the SST and SA closures are the ones providing the best results for the test cases of interest here. Nonetheless, the two closures still present shortcomings in the simulation of SBLI flows. The overall simulation results using the RSM closure for the present SBLI test cases are not better than the SA and SST results. One must observe that the latter are much simpler turbulence models. Additional studies shall be focused on providing more robustness to the simulations with the 7-equation RSM turbulence model.
id ITA_7f0a781653da0ff5690320e17adb9e5b
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2883
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling A numerical study on shock wave - boundary layer interaction flowsOndas de choqueEscoamento supersônicoCamada limite turbulentaDinâmica dos fluidos computacionalMecânica dos fluidosAerodinâmicaFísicaThis thesis addresses the important problem of shock wave--boundary layer interaction (SBLI) flows for aerospace engineering applications. Moreover, the work emphasizes the need for high fidelity simulations for the appropriate treatment of such flows. In this context, RANS solvers appear as a cost effective CFD approach. Therefore, the present work conducts studies in such a way to identify and to understand limitations, strengths and capabilities of RANS simulations for SBLI flows. Since turbulence modeling is an important issue on the accuracy of such simulations, the efforts here are concentrated on assessing the capabilities of several models that range from linear eddy-viscosity models (EVM) to Reynolds-stress closures (RSM). It would be expected that a RSM-type model could provide better solutions for a 3-D turbulent boundary layer under the action of high adverse pressure gradients, once such models allow for anisotropy between the Reynolds stress components. In order to achieve such goals, the configurations presented at the 2010 AIAA SBLI Workshop are chosen as the current test cases. Such test cases deal with high speed flows and very complex phenomena, including boundary layer separation. Meshes, composed of hexahedral and wedge elements, have been built. Mesh refinement and grid convergence studies are performed in order to identify a grid with a good compromise between accuracy and computational cost. In any event, even using the baseline grids, the present work has found that the computations are considerably expensive. Several simulations are presented for the test cases. Although no turbulence model has remarkably shown an outstanding performance over the others, the present work indicates that the SST and SA closures are the ones providing the best results for the test cases of interest here. Nonetheless, the two closures still present shortcomings in the simulation of SBLI flows. The overall simulation results using the RSM closure for the present SBLI test cases are not better than the SA and SST results. One must observe that the latter are much simpler turbulence models. Additional studies shall be focused on providing more robustness to the simulations with the 7-equation RSM turbulence model.Instituto Tecnológico de AeronáuticaJoão Luiz Filgueiras de AzevedoRafael Fontes Vieira2013-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2883reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:05:01Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2883http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:40:21.381Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv A numerical study on shock wave - boundary layer interaction flows
title A numerical study on shock wave - boundary layer interaction flows
spellingShingle A numerical study on shock wave - boundary layer interaction flows
Rafael Fontes Vieira
Ondas de choque
Escoamento supersônico
Camada limite turbulenta
Dinâmica dos fluidos computacional
Mecânica dos fluidos
Aerodinâmica
Física
title_short A numerical study on shock wave - boundary layer interaction flows
title_full A numerical study on shock wave - boundary layer interaction flows
title_fullStr A numerical study on shock wave - boundary layer interaction flows
title_full_unstemmed A numerical study on shock wave - boundary layer interaction flows
title_sort A numerical study on shock wave - boundary layer interaction flows
author Rafael Fontes Vieira
author_facet Rafael Fontes Vieira
author_role author
dc.contributor.none.fl_str_mv João Luiz Filgueiras de Azevedo
dc.contributor.author.fl_str_mv Rafael Fontes Vieira
dc.subject.por.fl_str_mv Ondas de choque
Escoamento supersônico
Camada limite turbulenta
Dinâmica dos fluidos computacional
Mecânica dos fluidos
Aerodinâmica
Física
topic Ondas de choque
Escoamento supersônico
Camada limite turbulenta
Dinâmica dos fluidos computacional
Mecânica dos fluidos
Aerodinâmica
Física
dc.description.none.fl_txt_mv This thesis addresses the important problem of shock wave--boundary layer interaction (SBLI) flows for aerospace engineering applications. Moreover, the work emphasizes the need for high fidelity simulations for the appropriate treatment of such flows. In this context, RANS solvers appear as a cost effective CFD approach. Therefore, the present work conducts studies in such a way to identify and to understand limitations, strengths and capabilities of RANS simulations for SBLI flows. Since turbulence modeling is an important issue on the accuracy of such simulations, the efforts here are concentrated on assessing the capabilities of several models that range from linear eddy-viscosity models (EVM) to Reynolds-stress closures (RSM). It would be expected that a RSM-type model could provide better solutions for a 3-D turbulent boundary layer under the action of high adverse pressure gradients, once such models allow for anisotropy between the Reynolds stress components. In order to achieve such goals, the configurations presented at the 2010 AIAA SBLI Workshop are chosen as the current test cases. Such test cases deal with high speed flows and very complex phenomena, including boundary layer separation. Meshes, composed of hexahedral and wedge elements, have been built. Mesh refinement and grid convergence studies are performed in order to identify a grid with a good compromise between accuracy and computational cost. In any event, even using the baseline grids, the present work has found that the computations are considerably expensive. Several simulations are presented for the test cases. Although no turbulence model has remarkably shown an outstanding performance over the others, the present work indicates that the SST and SA closures are the ones providing the best results for the test cases of interest here. Nonetheless, the two closures still present shortcomings in the simulation of SBLI flows. The overall simulation results using the RSM closure for the present SBLI test cases are not better than the SA and SST results. One must observe that the latter are much simpler turbulence models. Additional studies shall be focused on providing more robustness to the simulations with the 7-equation RSM turbulence model.
description This thesis addresses the important problem of shock wave--boundary layer interaction (SBLI) flows for aerospace engineering applications. Moreover, the work emphasizes the need for high fidelity simulations for the appropriate treatment of such flows. In this context, RANS solvers appear as a cost effective CFD approach. Therefore, the present work conducts studies in such a way to identify and to understand limitations, strengths and capabilities of RANS simulations for SBLI flows. Since turbulence modeling is an important issue on the accuracy of such simulations, the efforts here are concentrated on assessing the capabilities of several models that range from linear eddy-viscosity models (EVM) to Reynolds-stress closures (RSM). It would be expected that a RSM-type model could provide better solutions for a 3-D turbulent boundary layer under the action of high adverse pressure gradients, once such models allow for anisotropy between the Reynolds stress components. In order to achieve such goals, the configurations presented at the 2010 AIAA SBLI Workshop are chosen as the current test cases. Such test cases deal with high speed flows and very complex phenomena, including boundary layer separation. Meshes, composed of hexahedral and wedge elements, have been built. Mesh refinement and grid convergence studies are performed in order to identify a grid with a good compromise between accuracy and computational cost. In any event, even using the baseline grids, the present work has found that the computations are considerably expensive. Several simulations are presented for the test cases. Although no turbulence model has remarkably shown an outstanding performance over the others, the present work indicates that the SST and SA closures are the ones providing the best results for the test cases of interest here. Nonetheless, the two closures still present shortcomings in the simulation of SBLI flows. The overall simulation results using the RSM closure for the present SBLI test cases are not better than the SA and SST results. One must observe that the latter are much simpler turbulence models. Additional studies shall be focused on providing more robustness to the simulations with the 7-equation RSM turbulence model.
publishDate 2013
dc.date.none.fl_str_mv 2013-11-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2883
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2883
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Ondas de choque
Escoamento supersônico
Camada limite turbulenta
Dinâmica dos fluidos computacional
Mecânica dos fluidos
Aerodinâmica
Física
_version_ 1706809292728827904