Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.

Detalhes bibliográficos
Autor(a) principal: Hugo Stefanio de Almeida
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1123
Resumo: The present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.
id ITA_acd014303a109380a31c710da7633c46
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1123
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.Interações fluido-sólidoDinâmica dos fluidos computacionalAnálise estruturalAeroelasticidadeEscoamento transônicoEstruturas de aeronavesAerodinâmica não-estacionáriaFísicaEngenharia aeronáuticaThe present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.Instituto Tecnológico de AeronáuticaJoão Luiz Filgueiras de AzevedoHugo Stefanio de Almeida2010-12-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1123reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:34Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1123http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:35:18.283Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
title Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
spellingShingle Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
Hugo Stefanio de Almeida
Interações fluido-sólido
Dinâmica dos fluidos computacional
Análise estrutural
Aeroelasticidade
Escoamento transônico
Estruturas de aeronaves
Aerodinâmica não-estacionária
Física
Engenharia aeronáutica
title_short Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
title_full Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
title_fullStr Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
title_full_unstemmed Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
title_sort Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.
author Hugo Stefanio de Almeida
author_facet Hugo Stefanio de Almeida
author_role author
dc.contributor.none.fl_str_mv João Luiz Filgueiras de Azevedo
dc.contributor.author.fl_str_mv Hugo Stefanio de Almeida
dc.subject.por.fl_str_mv Interações fluido-sólido
Dinâmica dos fluidos computacional
Análise estrutural
Aeroelasticidade
Escoamento transônico
Estruturas de aeronaves
Aerodinâmica não-estacionária
Física
Engenharia aeronáutica
topic Interações fluido-sólido
Dinâmica dos fluidos computacional
Análise estrutural
Aeroelasticidade
Escoamento transônico
Estruturas de aeronaves
Aerodinâmica não-estacionária
Física
Engenharia aeronáutica
dc.description.none.fl_txt_mv The present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.
description The present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1123
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1123
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Interações fluido-sólido
Dinâmica dos fluidos computacional
Análise estrutural
Aeroelasticidade
Escoamento transônico
Estruturas de aeronaves
Aerodinâmica não-estacionária
Física
Engenharia aeronáutica
_version_ 1706809266325684224