Integração de sensores via filtro de Kalman.

Detalhes bibliográficos
Autor(a) principal: Rafael Cardoso
Data de Publicação: 2003
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2710
Resumo: Este trabalho apresenta uma investigação sobre algumas técnicas de integração de sensores para a estimação dos estados de um dado sistema dinâmico com modelo linear. As abordagens utilizadas são baseadas no filtro de Kalman. São consideradas duas configurações para a integração das informações dos sensores: integração centralizada e integração distribuída. Tais algoritmos consideram incertezas nas redes de comunicação entre os sensores e o sistema de processamento central. Também é investigado um algoritmo de identificação dos ganhos ótimos dos filtros de Kalman, para um sistema de integração distribuída, baseado nas correlações das inovações. Como contribuições, são desenvolvidas expressões para a quantificação dos erros de identificação dos ganhos ótimos dos filtros de Kalman em função dos erros na avaliação das correlações das inovações. De início, são obtidas expressões para o caso em que não existem incertezas nas redes de comunicação e apenas um sensor é considerado. Este resultado é então generalizado para o caso em que existem incertezas nas redes de comunicação e múltiplos sensores são considerados. Todos os algoritmos investigados são apresentados com detalhes de sua derivação e de forma a facilitar a compreensão das técnicas de estimação utilizadas, a teoria de estimação e do filtro de Kalman são brevemente apresentadas. Simulações são utilizadas para avaliar o desempenho dos algoritmos.
id ITA_ccc606b6174d8e43a5c13f299752dfb1
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2710
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Integração de sensores via filtro de Kalman.SensoresEstimação de sistemasFiltros de KalmanIdentificação de parâmetrosFiltragemAlgoritmosControleEste trabalho apresenta uma investigação sobre algumas técnicas de integração de sensores para a estimação dos estados de um dado sistema dinâmico com modelo linear. As abordagens utilizadas são baseadas no filtro de Kalman. São consideradas duas configurações para a integração das informações dos sensores: integração centralizada e integração distribuída. Tais algoritmos consideram incertezas nas redes de comunicação entre os sensores e o sistema de processamento central. Também é investigado um algoritmo de identificação dos ganhos ótimos dos filtros de Kalman, para um sistema de integração distribuída, baseado nas correlações das inovações. Como contribuições, são desenvolvidas expressões para a quantificação dos erros de identificação dos ganhos ótimos dos filtros de Kalman em função dos erros na avaliação das correlações das inovações. De início, são obtidas expressões para o caso em que não existem incertezas nas redes de comunicação e apenas um sensor é considerado. Este resultado é então generalizado para o caso em que existem incertezas nas redes de comunicação e múltiplos sensores são considerados. Todos os algoritmos investigados são apresentados com detalhes de sua derivação e de forma a facilitar a compreensão das técnicas de estimação utilizadas, a teoria de estimação e do filtro de Kalman são brevemente apresentadas. Simulações são utilizadas para avaliar o desempenho dos algoritmos. Instituto Tecnológico de AeronáuticaElder Moreira HemerlyRafael Cardoso2003-00-00info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2710reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:56Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2710http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:39:50.149Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Integração de sensores via filtro de Kalman.
title Integração de sensores via filtro de Kalman.
spellingShingle Integração de sensores via filtro de Kalman.
Rafael Cardoso
Sensores
Estimação de sistemas
Filtros de Kalman
Identificação de parâmetros
Filtragem
Algoritmos
Controle
title_short Integração de sensores via filtro de Kalman.
title_full Integração de sensores via filtro de Kalman.
title_fullStr Integração de sensores via filtro de Kalman.
title_full_unstemmed Integração de sensores via filtro de Kalman.
title_sort Integração de sensores via filtro de Kalman.
author Rafael Cardoso
author_facet Rafael Cardoso
author_role author
dc.contributor.none.fl_str_mv Elder Moreira Hemerly
dc.contributor.author.fl_str_mv Rafael Cardoso
dc.subject.por.fl_str_mv Sensores
Estimação de sistemas
Filtros de Kalman
Identificação de parâmetros
Filtragem
Algoritmos
Controle
topic Sensores
Estimação de sistemas
Filtros de Kalman
Identificação de parâmetros
Filtragem
Algoritmos
Controle
dc.description.none.fl_txt_mv Este trabalho apresenta uma investigação sobre algumas técnicas de integração de sensores para a estimação dos estados de um dado sistema dinâmico com modelo linear. As abordagens utilizadas são baseadas no filtro de Kalman. São consideradas duas configurações para a integração das informações dos sensores: integração centralizada e integração distribuída. Tais algoritmos consideram incertezas nas redes de comunicação entre os sensores e o sistema de processamento central. Também é investigado um algoritmo de identificação dos ganhos ótimos dos filtros de Kalman, para um sistema de integração distribuída, baseado nas correlações das inovações. Como contribuições, são desenvolvidas expressões para a quantificação dos erros de identificação dos ganhos ótimos dos filtros de Kalman em função dos erros na avaliação das correlações das inovações. De início, são obtidas expressões para o caso em que não existem incertezas nas redes de comunicação e apenas um sensor é considerado. Este resultado é então generalizado para o caso em que existem incertezas nas redes de comunicação e múltiplos sensores são considerados. Todos os algoritmos investigados são apresentados com detalhes de sua derivação e de forma a facilitar a compreensão das técnicas de estimação utilizadas, a teoria de estimação e do filtro de Kalman são brevemente apresentadas. Simulações são utilizadas para avaliar o desempenho dos algoritmos.
description Este trabalho apresenta uma investigação sobre algumas técnicas de integração de sensores para a estimação dos estados de um dado sistema dinâmico com modelo linear. As abordagens utilizadas são baseadas no filtro de Kalman. São consideradas duas configurações para a integração das informações dos sensores: integração centralizada e integração distribuída. Tais algoritmos consideram incertezas nas redes de comunicação entre os sensores e o sistema de processamento central. Também é investigado um algoritmo de identificação dos ganhos ótimos dos filtros de Kalman, para um sistema de integração distribuída, baseado nas correlações das inovações. Como contribuições, são desenvolvidas expressões para a quantificação dos erros de identificação dos ganhos ótimos dos filtros de Kalman em função dos erros na avaliação das correlações das inovações. De início, são obtidas expressões para o caso em que não existem incertezas nas redes de comunicação e apenas um sensor é considerado. Este resultado é então generalizado para o caso em que existem incertezas nas redes de comunicação e múltiplos sensores são considerados. Todos os algoritmos investigados são apresentados com detalhes de sua derivação e de forma a facilitar a compreensão das técnicas de estimação utilizadas, a teoria de estimação e do filtro de Kalman são brevemente apresentadas. Simulações são utilizadas para avaliar o desempenho dos algoritmos.
publishDate 2003
dc.date.none.fl_str_mv 2003-00-00
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2710
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2710
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Sensores
Estimação de sistemas
Filtros de Kalman
Identificação de parâmetros
Filtragem
Algoritmos
Controle
_version_ 1706809289499213824