Filtro não linear robusto para rastreamento de alvos ágeis

Detalhes bibliográficos
Autor(a) principal: Flávio Eler de Melo
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1242
Resumo: O problema de rastreio de aviões ágeis, sob altas acelerações, utilizando-se de filtros recursivos de estimação, necessita de modelos suficientemente sofisticados para a determinação de trajetórias com precisão desejável. Como conseqüência, surge a complexidade do algoritmo de estimação, que suscita métodos mais elaborados e com maior demanda de recursos computacionais, tanto para o tratamento de não linearidades do modelo quanto para a manipulação de um número maior de variáveis de estado que o caracterizam. Os modelos bidimensionais considerados para o rastreio de aviões civis em sistemas de controle de tráfego aéreo mostram-se insuficientes para o tratamento de manobras tridimensionais com consideráveis variações de altitude. Os modelos tridimensionais de curva constante, de curva plana variável e de curva coordenada possuem degradação de desempenho para alvos que perfazem curvas não planas e com razão de curva variável. O modelo de dinâmica de vôo de corpo rígido, para três dimensões, é relativamente complexo para constituir a base de um filtro de estimação prático e requer a observação da atitude do alvo, de forma colaborativa ou por imageamento, além de algum conhecimento a priori de parâmetros aerodinâmicos. O presente trabalho resolve as limitações dos modelos constantes da literatura utilizando um modelo de dinâmica de vôo de um ponto de massa que leva em conta características aerodinâmicas típicas para o movimento longitudinal. Este tratamento fornece um modelo dinâmico com um nível de detalhamento capaz de representar bem as manobras arrojadas, sem torná-lo complexo o suficiente para inviabilizar a realização do filtro. Este modelo é utilizado para o desenvolvimento de um filtro de estimação não linear, baseado no filtro de Kalman-Bucy estendido (EKBF). O filtro leva em conta a equação de estado em tempo contínuo e a equação de medida em tempo discreto, uma vez que a dinâmica de alvos ágeis é muito bem descrita em tempo contínuo, enquanto que a trajetória observada pelo sensor é essencialmente digital. Duas extensões deste filtro são estudadas: (i) o uso de termos de segunda ordem na aproximação do modelo conforme a teoria de Daum; e (ii) o emprego de uma rede neural acoplada ao filtro, treinada iterativamente, para a compensação de erros de modelagem e de cálculos das estimativas (NEKBF). As avaliações de desempenho qualitativa e quantitativa do modelo proposto, bem como das duas variações, é feita por meio de métodos sistemáticos de aferição de não linearidades, efeitos de bias, precisão e robustez. Conclui-se que o filtro proposto é suficientemente preciso para ser aplicado em sistemas de defesa e, com as extensões propostas, apresenta a robustez adequada para o rastreio de alvos em combate.
id ITA_e716441b2e6b89678d5a1fbcc83bf43b
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1242
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Filtro não linear robusto para rastreamento de alvos ágeisRastreamento (posição)Trajetórias de vooFiltros de KalmanSistemas não-linearesIndicadores de alvos móveisReconhecimento de alvoEstimação de estadoControleEngenharia aeronáuticaO problema de rastreio de aviões ágeis, sob altas acelerações, utilizando-se de filtros recursivos de estimação, necessita de modelos suficientemente sofisticados para a determinação de trajetórias com precisão desejável. Como conseqüência, surge a complexidade do algoritmo de estimação, que suscita métodos mais elaborados e com maior demanda de recursos computacionais, tanto para o tratamento de não linearidades do modelo quanto para a manipulação de um número maior de variáveis de estado que o caracterizam. Os modelos bidimensionais considerados para o rastreio de aviões civis em sistemas de controle de tráfego aéreo mostram-se insuficientes para o tratamento de manobras tridimensionais com consideráveis variações de altitude. Os modelos tridimensionais de curva constante, de curva plana variável e de curva coordenada possuem degradação de desempenho para alvos que perfazem curvas não planas e com razão de curva variável. O modelo de dinâmica de vôo de corpo rígido, para três dimensões, é relativamente complexo para constituir a base de um filtro de estimação prático e requer a observação da atitude do alvo, de forma colaborativa ou por imageamento, além de algum conhecimento a priori de parâmetros aerodinâmicos. O presente trabalho resolve as limitações dos modelos constantes da literatura utilizando um modelo de dinâmica de vôo de um ponto de massa que leva em conta características aerodinâmicas típicas para o movimento longitudinal. Este tratamento fornece um modelo dinâmico com um nível de detalhamento capaz de representar bem as manobras arrojadas, sem torná-lo complexo o suficiente para inviabilizar a realização do filtro. Este modelo é utilizado para o desenvolvimento de um filtro de estimação não linear, baseado no filtro de Kalman-Bucy estendido (EKBF). O filtro leva em conta a equação de estado em tempo contínuo e a equação de medida em tempo discreto, uma vez que a dinâmica de alvos ágeis é muito bem descrita em tempo contínuo, enquanto que a trajetória observada pelo sensor é essencialmente digital. Duas extensões deste filtro são estudadas: (i) o uso de termos de segunda ordem na aproximação do modelo conforme a teoria de Daum; e (ii) o emprego de uma rede neural acoplada ao filtro, treinada iterativamente, para a compensação de erros de modelagem e de cálculos das estimativas (NEKBF). As avaliações de desempenho qualitativa e quantitativa do modelo proposto, bem como das duas variações, é feita por meio de métodos sistemáticos de aferição de não linearidades, efeitos de bias, precisão e robustez. Conclui-se que o filtro proposto é suficientemente preciso para ser aplicado em sistemas de defesa e, com as extensões propostas, apresenta a robustez adequada para o rastreio de alvos em combate.Instituto Tecnológico de AeronáuticaKarl Heinz KienitzJosé Fernando Basso BrancalionFlávio Eler de Melo2009-06-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1242reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:36Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1242http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:35:47.78Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Filtro não linear robusto para rastreamento de alvos ágeis
title Filtro não linear robusto para rastreamento de alvos ágeis
spellingShingle Filtro não linear robusto para rastreamento de alvos ágeis
Flávio Eler de Melo
Rastreamento (posição)
Trajetórias de voo
Filtros de Kalman
Sistemas não-lineares
Indicadores de alvos móveis
Reconhecimento de alvo
Estimação de estado
Controle
Engenharia aeronáutica
title_short Filtro não linear robusto para rastreamento de alvos ágeis
title_full Filtro não linear robusto para rastreamento de alvos ágeis
title_fullStr Filtro não linear robusto para rastreamento de alvos ágeis
title_full_unstemmed Filtro não linear robusto para rastreamento de alvos ágeis
title_sort Filtro não linear robusto para rastreamento de alvos ágeis
author Flávio Eler de Melo
author_facet Flávio Eler de Melo
author_role author
dc.contributor.none.fl_str_mv Karl Heinz Kienitz
José Fernando Basso Brancalion
dc.contributor.author.fl_str_mv Flávio Eler de Melo
dc.subject.por.fl_str_mv Rastreamento (posição)
Trajetórias de voo
Filtros de Kalman
Sistemas não-lineares
Indicadores de alvos móveis
Reconhecimento de alvo
Estimação de estado
Controle
Engenharia aeronáutica
topic Rastreamento (posição)
Trajetórias de voo
Filtros de Kalman
Sistemas não-lineares
Indicadores de alvos móveis
Reconhecimento de alvo
Estimação de estado
Controle
Engenharia aeronáutica
dc.description.none.fl_txt_mv O problema de rastreio de aviões ágeis, sob altas acelerações, utilizando-se de filtros recursivos de estimação, necessita de modelos suficientemente sofisticados para a determinação de trajetórias com precisão desejável. Como conseqüência, surge a complexidade do algoritmo de estimação, que suscita métodos mais elaborados e com maior demanda de recursos computacionais, tanto para o tratamento de não linearidades do modelo quanto para a manipulação de um número maior de variáveis de estado que o caracterizam. Os modelos bidimensionais considerados para o rastreio de aviões civis em sistemas de controle de tráfego aéreo mostram-se insuficientes para o tratamento de manobras tridimensionais com consideráveis variações de altitude. Os modelos tridimensionais de curva constante, de curva plana variável e de curva coordenada possuem degradação de desempenho para alvos que perfazem curvas não planas e com razão de curva variável. O modelo de dinâmica de vôo de corpo rígido, para três dimensões, é relativamente complexo para constituir a base de um filtro de estimação prático e requer a observação da atitude do alvo, de forma colaborativa ou por imageamento, além de algum conhecimento a priori de parâmetros aerodinâmicos. O presente trabalho resolve as limitações dos modelos constantes da literatura utilizando um modelo de dinâmica de vôo de um ponto de massa que leva em conta características aerodinâmicas típicas para o movimento longitudinal. Este tratamento fornece um modelo dinâmico com um nível de detalhamento capaz de representar bem as manobras arrojadas, sem torná-lo complexo o suficiente para inviabilizar a realização do filtro. Este modelo é utilizado para o desenvolvimento de um filtro de estimação não linear, baseado no filtro de Kalman-Bucy estendido (EKBF). O filtro leva em conta a equação de estado em tempo contínuo e a equação de medida em tempo discreto, uma vez que a dinâmica de alvos ágeis é muito bem descrita em tempo contínuo, enquanto que a trajetória observada pelo sensor é essencialmente digital. Duas extensões deste filtro são estudadas: (i) o uso de termos de segunda ordem na aproximação do modelo conforme a teoria de Daum; e (ii) o emprego de uma rede neural acoplada ao filtro, treinada iterativamente, para a compensação de erros de modelagem e de cálculos das estimativas (NEKBF). As avaliações de desempenho qualitativa e quantitativa do modelo proposto, bem como das duas variações, é feita por meio de métodos sistemáticos de aferição de não linearidades, efeitos de bias, precisão e robustez. Conclui-se que o filtro proposto é suficientemente preciso para ser aplicado em sistemas de defesa e, com as extensões propostas, apresenta a robustez adequada para o rastreio de alvos em combate.
description O problema de rastreio de aviões ágeis, sob altas acelerações, utilizando-se de filtros recursivos de estimação, necessita de modelos suficientemente sofisticados para a determinação de trajetórias com precisão desejável. Como conseqüência, surge a complexidade do algoritmo de estimação, que suscita métodos mais elaborados e com maior demanda de recursos computacionais, tanto para o tratamento de não linearidades do modelo quanto para a manipulação de um número maior de variáveis de estado que o caracterizam. Os modelos bidimensionais considerados para o rastreio de aviões civis em sistemas de controle de tráfego aéreo mostram-se insuficientes para o tratamento de manobras tridimensionais com consideráveis variações de altitude. Os modelos tridimensionais de curva constante, de curva plana variável e de curva coordenada possuem degradação de desempenho para alvos que perfazem curvas não planas e com razão de curva variável. O modelo de dinâmica de vôo de corpo rígido, para três dimensões, é relativamente complexo para constituir a base de um filtro de estimação prático e requer a observação da atitude do alvo, de forma colaborativa ou por imageamento, além de algum conhecimento a priori de parâmetros aerodinâmicos. O presente trabalho resolve as limitações dos modelos constantes da literatura utilizando um modelo de dinâmica de vôo de um ponto de massa que leva em conta características aerodinâmicas típicas para o movimento longitudinal. Este tratamento fornece um modelo dinâmico com um nível de detalhamento capaz de representar bem as manobras arrojadas, sem torná-lo complexo o suficiente para inviabilizar a realização do filtro. Este modelo é utilizado para o desenvolvimento de um filtro de estimação não linear, baseado no filtro de Kalman-Bucy estendido (EKBF). O filtro leva em conta a equação de estado em tempo contínuo e a equação de medida em tempo discreto, uma vez que a dinâmica de alvos ágeis é muito bem descrita em tempo contínuo, enquanto que a trajetória observada pelo sensor é essencialmente digital. Duas extensões deste filtro são estudadas: (i) o uso de termos de segunda ordem na aproximação do modelo conforme a teoria de Daum; e (ii) o emprego de uma rede neural acoplada ao filtro, treinada iterativamente, para a compensação de erros de modelagem e de cálculos das estimativas (NEKBF). As avaliações de desempenho qualitativa e quantitativa do modelo proposto, bem como das duas variações, é feita por meio de métodos sistemáticos de aferição de não linearidades, efeitos de bias, precisão e robustez. Conclui-se que o filtro proposto é suficientemente preciso para ser aplicado em sistemas de defesa e, com as extensões propostas, apresenta a robustez adequada para o rastreio de alvos em combate.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1242
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1242
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Rastreamento (posição)
Trajetórias de voo
Filtros de Kalman
Sistemas não-lineares
Indicadores de alvos móveis
Reconhecimento de alvo
Estimação de estado
Controle
Engenharia aeronáutica
_version_ 1706809267444514816