Analysis of error in temperature measurement.

Detalhes bibliográficos
Autor(a) principal: Valdir Araújo de Souza
Data de Publicação: 2000
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2365
Resumo: This work presents the numerical investigation of temperature measurement error using thermocouple for different configurations utilizing a computational tool based on finite element method (Galerkin Method). The numerical code performs a two-dimensional analysis while most of the analytical models are one-dimensional. The results are then compared with the analytical, experimental and some numerical results obtained through the finite difference method. In this work five configurations are analysed: in the first configuration the error is analysed when the thermocouple is placed on a surface of a large dimensions body with an insulated wall except at the thermocouple contact region. In this configuration a technique to reduce the error in the temperature measurement is also presented. The second configuration shows the temperature measurement error when the thermocouple is embedded in a solid with constant heat flux over the opposing wall. The third configuration presents the influence of the role in a solid with a constant heat flux on the opposing surface. In the fourth configuration the temperature measurement error is investigated when the thermocouple is placed inside solids varying the depth of the thermocouple insertion for different types of materials error is analysed when a thin flat plate is surrounded either side by fluids at measurement error is analysed when a thin flat plate is surrounded either side by fluids at different temperature. The simulation were performed in a steady-state condition for all configurations and it was observed that the error is high when the thermal conductivity of the body is low and the heat transfer coefficient over the thermocouple is high. On the other hand the error is reduced when the thermocouple radius is small and also when the body dimension is large.
id ITA_fdeda26ae754d9339b8f6616dea21468
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2365
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Analysis of error in temperature measurement.Medidas de temperaturaAnálise de errosMétodo de elementos finitosTermoparesTermodinâmicaFísicaEngenharia mecânicaThis work presents the numerical investigation of temperature measurement error using thermocouple for different configurations utilizing a computational tool based on finite element method (Galerkin Method). The numerical code performs a two-dimensional analysis while most of the analytical models are one-dimensional. The results are then compared with the analytical, experimental and some numerical results obtained through the finite difference method. In this work five configurations are analysed: in the first configuration the error is analysed when the thermocouple is placed on a surface of a large dimensions body with an insulated wall except at the thermocouple contact region. In this configuration a technique to reduce the error in the temperature measurement is also presented. The second configuration shows the temperature measurement error when the thermocouple is embedded in a solid with constant heat flux over the opposing wall. The third configuration presents the influence of the role in a solid with a constant heat flux on the opposing surface. In the fourth configuration the temperature measurement error is investigated when the thermocouple is placed inside solids varying the depth of the thermocouple insertion for different types of materials error is analysed when a thin flat plate is surrounded either side by fluids at measurement error is analysed when a thin flat plate is surrounded either side by fluids at different temperature. The simulation were performed in a steady-state condition for all configurations and it was observed that the error is high when the thermal conductivity of the body is low and the heat transfer coefficient over the thermocouple is high. On the other hand the error is reduced when the thermocouple radius is small and also when the body dimension is large. Instituto Tecnológico de AeronáuticaEdson Luiz ZaparoliValdir Araújo de Souza2000-00-00info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2365reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:46Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2365http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:56.639Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Analysis of error in temperature measurement.
title Analysis of error in temperature measurement.
spellingShingle Analysis of error in temperature measurement.
Valdir Araújo de Souza
Medidas de temperatura
Análise de erros
Método de elementos finitos
Termopares
Termodinâmica
Física
Engenharia mecânica
title_short Analysis of error in temperature measurement.
title_full Analysis of error in temperature measurement.
title_fullStr Analysis of error in temperature measurement.
title_full_unstemmed Analysis of error in temperature measurement.
title_sort Analysis of error in temperature measurement.
author Valdir Araújo de Souza
author_facet Valdir Araújo de Souza
author_role author
dc.contributor.none.fl_str_mv Edson Luiz Zaparoli
dc.contributor.author.fl_str_mv Valdir Araújo de Souza
dc.subject.por.fl_str_mv Medidas de temperatura
Análise de erros
Método de elementos finitos
Termopares
Termodinâmica
Física
Engenharia mecânica
topic Medidas de temperatura
Análise de erros
Método de elementos finitos
Termopares
Termodinâmica
Física
Engenharia mecânica
dc.description.none.fl_txt_mv This work presents the numerical investigation of temperature measurement error using thermocouple for different configurations utilizing a computational tool based on finite element method (Galerkin Method). The numerical code performs a two-dimensional analysis while most of the analytical models are one-dimensional. The results are then compared with the analytical, experimental and some numerical results obtained through the finite difference method. In this work five configurations are analysed: in the first configuration the error is analysed when the thermocouple is placed on a surface of a large dimensions body with an insulated wall except at the thermocouple contact region. In this configuration a technique to reduce the error in the temperature measurement is also presented. The second configuration shows the temperature measurement error when the thermocouple is embedded in a solid with constant heat flux over the opposing wall. The third configuration presents the influence of the role in a solid with a constant heat flux on the opposing surface. In the fourth configuration the temperature measurement error is investigated when the thermocouple is placed inside solids varying the depth of the thermocouple insertion for different types of materials error is analysed when a thin flat plate is surrounded either side by fluids at measurement error is analysed when a thin flat plate is surrounded either side by fluids at different temperature. The simulation were performed in a steady-state condition for all configurations and it was observed that the error is high when the thermal conductivity of the body is low and the heat transfer coefficient over the thermocouple is high. On the other hand the error is reduced when the thermocouple radius is small and also when the body dimension is large.
description This work presents the numerical investigation of temperature measurement error using thermocouple for different configurations utilizing a computational tool based on finite element method (Galerkin Method). The numerical code performs a two-dimensional analysis while most of the analytical models are one-dimensional. The results are then compared with the analytical, experimental and some numerical results obtained through the finite difference method. In this work five configurations are analysed: in the first configuration the error is analysed when the thermocouple is placed on a surface of a large dimensions body with an insulated wall except at the thermocouple contact region. In this configuration a technique to reduce the error in the temperature measurement is also presented. The second configuration shows the temperature measurement error when the thermocouple is embedded in a solid with constant heat flux over the opposing wall. The third configuration presents the influence of the role in a solid with a constant heat flux on the opposing surface. In the fourth configuration the temperature measurement error is investigated when the thermocouple is placed inside solids varying the depth of the thermocouple insertion for different types of materials error is analysed when a thin flat plate is surrounded either side by fluids at measurement error is analysed when a thin flat plate is surrounded either side by fluids at different temperature. The simulation were performed in a steady-state condition for all configurations and it was observed that the error is high when the thermal conductivity of the body is low and the heat transfer coefficient over the thermocouple is high. On the other hand the error is reduced when the thermocouple radius is small and also when the body dimension is large.
publishDate 2000
dc.date.none.fl_str_mv 2000-00-00
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2365
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2365
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Medidas de temperatura
Análise de erros
Método de elementos finitos
Termopares
Termodinâmica
Física
Engenharia mecânica
_version_ 1706809284065492992