Leis de controle longitudinal para uma aeronave com estabilidade relaxada.

Detalhes bibliográficos
Autor(a) principal: Christianne Reiser
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1191
Resumo: O escopo do presente trabalho envolve a síntese de leis de aumento de estabilidade e controle de uma aeronave a jato comercial, que possui estabilidade longitudinal relaxada inerente. As características de estabilidade e de resposta desta aeronave são avaliadas em várias condições de vôo, incluindo diferentes posicionamentos de flapes, variações de CG, de peso, de altitude e de velocidade. Controladores são, então, projetados com a finalidade de aumentar tanto a estabilidade quanto o controle do sistema. Com o objetivo de selecionar a estrutura de controle mais adequada à aeronave em questão, pontos críticos do envelope de cada posição de flap da aeronave são escolhidos e uma estrutura de controle simples é aplicada, o Nz. A definição da estrutura realizou-se de acordo com a necessidade de melhoria das respostas, que está intrinsecamente relacionada aos requisitos de projeto. Dentre os requisitos de projeto, cita-se o cumprimento de determinados critérios de qualidade de vôo, como o C*. Como as respostas obtidas pelo controlador Nz (aceleração normal) não satisfazem este critério, optou-se pela aplicação de uma estrutura com realimentação da velocidade de arfagem ($q$) no CAS. O requisito de estabilidade de velocidade firma, então, a estrutura C*u como a mais adequada. A estrutura utilizada envolve um SAS com realimentação de saída do ângulo de ataque e de $q$ na malha interna, um CAS com realimentação de $n_z$, $q$ e de velocidade, além de um compensador PID na malha externa. Com base no C*u, ganhos são calculados para o ponto crítico de cruzeiro. O cálculo dos ganhos é realizado de acordo com a metodologia LQR, cujas matrizes de ponderação são estimadas por aproximações das regras de Bryson e de Gangsaas. O peso das variáveis que não são pré-determinadas por estas regras é variado para a obtenção da melhor ponderação. Antes da otimização dos ganhos propriamente dito, uma estimativa de ganhos iniciais é aplicada com o objetivo afastar o pólo com a maior parte real do eixo imaginário. Diversas respostas são obtidas devido à gama de parâmetros variáveis de projeto descritos acima. Dentre estas, as respostas consideradas mais satisfatórias são elegidas e aplicadas à diversos pontos de operação. O uso dos ganhos obtidos dividem naturalmente os pontos de operação em quatro intervalos de variação da pressão dinâmica, cada um com seus respectivos ganhos. O escalonamento de ganhos é, então, validado por intermédio da aplicação da estrutura de controle final em pontos de operação com CG e peso da aeronave distintos dos de projeto.
id ITA_ffe4066efe6067aae1f0a0f15ab041d5
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1191
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Leis de controle longitudinal para uma aeronave com estabilidade relaxada.Controle longitudinalEstabilidade de aeronavesCondições de vôoEstimação de sistemasOtimizaçãoTeoria de controleAerodinâmicaEngenharia aeronáuticaO escopo do presente trabalho envolve a síntese de leis de aumento de estabilidade e controle de uma aeronave a jato comercial, que possui estabilidade longitudinal relaxada inerente. As características de estabilidade e de resposta desta aeronave são avaliadas em várias condições de vôo, incluindo diferentes posicionamentos de flapes, variações de CG, de peso, de altitude e de velocidade. Controladores são, então, projetados com a finalidade de aumentar tanto a estabilidade quanto o controle do sistema. Com o objetivo de selecionar a estrutura de controle mais adequada à aeronave em questão, pontos críticos do envelope de cada posição de flap da aeronave são escolhidos e uma estrutura de controle simples é aplicada, o Nz. A definição da estrutura realizou-se de acordo com a necessidade de melhoria das respostas, que está intrinsecamente relacionada aos requisitos de projeto. Dentre os requisitos de projeto, cita-se o cumprimento de determinados critérios de qualidade de vôo, como o C*. Como as respostas obtidas pelo controlador Nz (aceleração normal) não satisfazem este critério, optou-se pela aplicação de uma estrutura com realimentação da velocidade de arfagem ($q$) no CAS. O requisito de estabilidade de velocidade firma, então, a estrutura C*u como a mais adequada. A estrutura utilizada envolve um SAS com realimentação de saída do ângulo de ataque e de $q$ na malha interna, um CAS com realimentação de $n_z$, $q$ e de velocidade, além de um compensador PID na malha externa. Com base no C*u, ganhos são calculados para o ponto crítico de cruzeiro. O cálculo dos ganhos é realizado de acordo com a metodologia LQR, cujas matrizes de ponderação são estimadas por aproximações das regras de Bryson e de Gangsaas. O peso das variáveis que não são pré-determinadas por estas regras é variado para a obtenção da melhor ponderação. Antes da otimização dos ganhos propriamente dito, uma estimativa de ganhos iniciais é aplicada com o objetivo afastar o pólo com a maior parte real do eixo imaginário. Diversas respostas são obtidas devido à gama de parâmetros variáveis de projeto descritos acima. Dentre estas, as respostas consideradas mais satisfatórias são elegidas e aplicadas à diversos pontos de operação. O uso dos ganhos obtidos dividem naturalmente os pontos de operação em quatro intervalos de variação da pressão dinâmica, cada um com seus respectivos ganhos. O escalonamento de ganhos é, então, validado por intermédio da aplicação da estrutura de controle final em pontos de operação com CG e peso da aeronave distintos dos de projeto.Instituto Tecnológico de AeronáuticaPedro PaglioneReneu Luiz AndriolliChristianne Reiser2008-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1191reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:34Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1191http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:35:35.645Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
title Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
spellingShingle Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
Christianne Reiser
Controle longitudinal
Estabilidade de aeronaves
Condições de vôo
Estimação de sistemas
Otimização
Teoria de controle
Aerodinâmica
Engenharia aeronáutica
title_short Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
title_full Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
title_fullStr Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
title_full_unstemmed Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
title_sort Leis de controle longitudinal para uma aeronave com estabilidade relaxada.
author Christianne Reiser
author_facet Christianne Reiser
author_role author
dc.contributor.none.fl_str_mv Pedro Paglione
Reneu Luiz Andriolli
dc.contributor.author.fl_str_mv Christianne Reiser
dc.subject.por.fl_str_mv Controle longitudinal
Estabilidade de aeronaves
Condições de vôo
Estimação de sistemas
Otimização
Teoria de controle
Aerodinâmica
Engenharia aeronáutica
topic Controle longitudinal
Estabilidade de aeronaves
Condições de vôo
Estimação de sistemas
Otimização
Teoria de controle
Aerodinâmica
Engenharia aeronáutica
dc.description.none.fl_txt_mv O escopo do presente trabalho envolve a síntese de leis de aumento de estabilidade e controle de uma aeronave a jato comercial, que possui estabilidade longitudinal relaxada inerente. As características de estabilidade e de resposta desta aeronave são avaliadas em várias condições de vôo, incluindo diferentes posicionamentos de flapes, variações de CG, de peso, de altitude e de velocidade. Controladores são, então, projetados com a finalidade de aumentar tanto a estabilidade quanto o controle do sistema. Com o objetivo de selecionar a estrutura de controle mais adequada à aeronave em questão, pontos críticos do envelope de cada posição de flap da aeronave são escolhidos e uma estrutura de controle simples é aplicada, o Nz. A definição da estrutura realizou-se de acordo com a necessidade de melhoria das respostas, que está intrinsecamente relacionada aos requisitos de projeto. Dentre os requisitos de projeto, cita-se o cumprimento de determinados critérios de qualidade de vôo, como o C*. Como as respostas obtidas pelo controlador Nz (aceleração normal) não satisfazem este critério, optou-se pela aplicação de uma estrutura com realimentação da velocidade de arfagem ($q$) no CAS. O requisito de estabilidade de velocidade firma, então, a estrutura C*u como a mais adequada. A estrutura utilizada envolve um SAS com realimentação de saída do ângulo de ataque e de $q$ na malha interna, um CAS com realimentação de $n_z$, $q$ e de velocidade, além de um compensador PID na malha externa. Com base no C*u, ganhos são calculados para o ponto crítico de cruzeiro. O cálculo dos ganhos é realizado de acordo com a metodologia LQR, cujas matrizes de ponderação são estimadas por aproximações das regras de Bryson e de Gangsaas. O peso das variáveis que não são pré-determinadas por estas regras é variado para a obtenção da melhor ponderação. Antes da otimização dos ganhos propriamente dito, uma estimativa de ganhos iniciais é aplicada com o objetivo afastar o pólo com a maior parte real do eixo imaginário. Diversas respostas são obtidas devido à gama de parâmetros variáveis de projeto descritos acima. Dentre estas, as respostas consideradas mais satisfatórias são elegidas e aplicadas à diversos pontos de operação. O uso dos ganhos obtidos dividem naturalmente os pontos de operação em quatro intervalos de variação da pressão dinâmica, cada um com seus respectivos ganhos. O escalonamento de ganhos é, então, validado por intermédio da aplicação da estrutura de controle final em pontos de operação com CG e peso da aeronave distintos dos de projeto.
description O escopo do presente trabalho envolve a síntese de leis de aumento de estabilidade e controle de uma aeronave a jato comercial, que possui estabilidade longitudinal relaxada inerente. As características de estabilidade e de resposta desta aeronave são avaliadas em várias condições de vôo, incluindo diferentes posicionamentos de flapes, variações de CG, de peso, de altitude e de velocidade. Controladores são, então, projetados com a finalidade de aumentar tanto a estabilidade quanto o controle do sistema. Com o objetivo de selecionar a estrutura de controle mais adequada à aeronave em questão, pontos críticos do envelope de cada posição de flap da aeronave são escolhidos e uma estrutura de controle simples é aplicada, o Nz. A definição da estrutura realizou-se de acordo com a necessidade de melhoria das respostas, que está intrinsecamente relacionada aos requisitos de projeto. Dentre os requisitos de projeto, cita-se o cumprimento de determinados critérios de qualidade de vôo, como o C*. Como as respostas obtidas pelo controlador Nz (aceleração normal) não satisfazem este critério, optou-se pela aplicação de uma estrutura com realimentação da velocidade de arfagem ($q$) no CAS. O requisito de estabilidade de velocidade firma, então, a estrutura C*u como a mais adequada. A estrutura utilizada envolve um SAS com realimentação de saída do ângulo de ataque e de $q$ na malha interna, um CAS com realimentação de $n_z$, $q$ e de velocidade, além de um compensador PID na malha externa. Com base no C*u, ganhos são calculados para o ponto crítico de cruzeiro. O cálculo dos ganhos é realizado de acordo com a metodologia LQR, cujas matrizes de ponderação são estimadas por aproximações das regras de Bryson e de Gangsaas. O peso das variáveis que não são pré-determinadas por estas regras é variado para a obtenção da melhor ponderação. Antes da otimização dos ganhos propriamente dito, uma estimativa de ganhos iniciais é aplicada com o objetivo afastar o pólo com a maior parte real do eixo imaginário. Diversas respostas são obtidas devido à gama de parâmetros variáveis de projeto descritos acima. Dentre estas, as respostas consideradas mais satisfatórias são elegidas e aplicadas à diversos pontos de operação. O uso dos ganhos obtidos dividem naturalmente os pontos de operação em quatro intervalos de variação da pressão dinâmica, cada um com seus respectivos ganhos. O escalonamento de ganhos é, então, validado por intermédio da aplicação da estrutura de controle final em pontos de operação com CG e peso da aeronave distintos dos de projeto.
publishDate 2008
dc.date.none.fl_str_mv 2008-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1191
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1191
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Controle longitudinal
Estabilidade de aeronaves
Condições de vôo
Estimação de sistemas
Otimização
Teoria de controle
Aerodinâmica
Engenharia aeronáutica
_version_ 1706809266724143104