Collection Score and the Opportunities for Non-Performing Loans Market

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Eric Bacconi
Data de Publicação: 2021
Outros Autores: Santos, Francisco Carlos Barbosa dos, Bontempo, Paulo César
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista JRG de Estudos Acadêmicos
Texto Completo: http://revistajrg.com/index.php/jrg/article/view/503
Resumo: In the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology.
id JRG_b139d0603815d0e907303509dfd2072c
oai_identifier_str oai:ojs2.revistajrg.com:article/503
network_acronym_str JRG
network_name_str Revista JRG de Estudos Acadêmicos
repository_id_str
spelling Collection Score and the Opportunities for Non-Performing Loans Market Collection Score e as Oportunidades no Mercado de Non-Performing LoansNon-performing loansCollection ScoringRegressão LogísticaModelos EstatísticosCobrançaNon-performing loansCollection ScoringLogistic RegressionStatistical ModelsIn the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology.Na literatura acadêmica, modelos aplicados à área de crédito (chamados de credit scoring) são largamente explorados, ao passo que modelos aplicados à cobrança (chamados de collection scoring) são pouco abordados; da mesma maneira existem poucos artigos que tratam o mercado brasileiro de empréstimos bancários não pagos ou mais comumente chamados de non-performing-loans. Este trabalho traz como principais contribuições: a utilização de modelos de scoring na área de Cobrança, e trabalhar com dados non-performing-loans. O objetivo deste trabalho é, desenvolver um modelo de collection scoring por intermédio de Regressão Logística para identificar, em uma carteira de clientes com “créditos podres”, para verificar a possibilidade ajustar um bom modelo com altas taxas de acerto e apontar quais clientes têm maior propensão de pagar os créditos não performados. Os resultados mostram que o modelo funcionou bem para o público testado, obtendo um excelente ajuste (taxa de acerto superior a 83% nas amostras de desenvolvimento e de validação; KS de 68), apontando a viabilidade de sua aplicação.Editora JRG2021-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttp://revistajrg.com/index.php/jrg/article/view/50310.5281/zenodo.7702425ark:/57118/JRG.v4i9.503JRG Journal of Academic Studies; Vol. 4 No. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388JRG Journal of Academic Studies ; Vol. 4 Núm. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388JRG Journal of Academic Studies; V. 4 N. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388Revista JRG de Estudos Acadêmicos ; v. 4 n. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-3882595-166110.29327/257411.4.9-1reponame:Revista JRG de Estudos Acadêmicosinstname:Editora JRGinstacron:JRGporhttp://revistajrg.com/index.php/jrg/article/view/503/540ark:/57118/jrg.v4i9.503.g540https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGonçalves, Eric BacconiSantos, Francisco Carlos Barbosa dosBontempo, Paulo César2023-02-24T22:47:22Zoai:ojs2.revistajrg.com:article/503Revistahttp://revistajrg.com/index.php/jrgPRIhttp://revistajrg.com/index.php/jrg/oaiprofessorjonas@gmail.com||2595-16612595-1661opendoar:2023-02-24T22:47:22Revista JRG de Estudos Acadêmicos - Editora JRGfalse
dc.title.none.fl_str_mv Collection Score and the Opportunities for Non-Performing Loans Market
Collection Score e as Oportunidades no Mercado de Non-Performing Loans
title Collection Score and the Opportunities for Non-Performing Loans Market
spellingShingle Collection Score and the Opportunities for Non-Performing Loans Market
Gonçalves, Eric Bacconi
Non-performing loans
Collection Scoring
Regressão Logística
Modelos Estatísticos
Cobrança
Non-performing loans
Collection Scoring
Logistic Regression
Statistical Models
title_short Collection Score and the Opportunities for Non-Performing Loans Market
title_full Collection Score and the Opportunities for Non-Performing Loans Market
title_fullStr Collection Score and the Opportunities for Non-Performing Loans Market
title_full_unstemmed Collection Score and the Opportunities for Non-Performing Loans Market
title_sort Collection Score and the Opportunities for Non-Performing Loans Market
author Gonçalves, Eric Bacconi
author_facet Gonçalves, Eric Bacconi
Santos, Francisco Carlos Barbosa dos
Bontempo, Paulo César
author_role author
author2 Santos, Francisco Carlos Barbosa dos
Bontempo, Paulo César
author2_role author
author
dc.contributor.author.fl_str_mv Gonçalves, Eric Bacconi
Santos, Francisco Carlos Barbosa dos
Bontempo, Paulo César
dc.subject.por.fl_str_mv Non-performing loans
Collection Scoring
Regressão Logística
Modelos Estatísticos
Cobrança
Non-performing loans
Collection Scoring
Logistic Regression
Statistical Models
topic Non-performing loans
Collection Scoring
Regressão Logística
Modelos Estatísticos
Cobrança
Non-performing loans
Collection Scoring
Logistic Regression
Statistical Models
description In the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistajrg.com/index.php/jrg/article/view/503
10.5281/zenodo.7702425
ark:/57118/JRG.v4i9.503
url http://revistajrg.com/index.php/jrg/article/view/503
identifier_str_mv 10.5281/zenodo.7702425
ark:/57118/JRG.v4i9.503
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistajrg.com/index.php/jrg/article/view/503/540
ark:/57118/jrg.v4i9.503.g540
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora JRG
publisher.none.fl_str_mv Editora JRG
dc.source.none.fl_str_mv JRG Journal of Academic Studies; Vol. 4 No. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388
JRG Journal of Academic Studies ; Vol. 4 Núm. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388
JRG Journal of Academic Studies; V. 4 N. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388
Revista JRG de Estudos Acadêmicos ; v. 4 n. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388
2595-1661
10.29327/257411.4.9-1
reponame:Revista JRG de Estudos Acadêmicos
instname:Editora JRG
instacron:JRG
instname_str Editora JRG
instacron_str JRG
institution JRG
reponame_str Revista JRG de Estudos Acadêmicos
collection Revista JRG de Estudos Acadêmicos
repository.name.fl_str_mv Revista JRG de Estudos Acadêmicos - Editora JRG
repository.mail.fl_str_mv professorjonas@gmail.com||
_version_ 1797068981252653056