Collection Score and the Opportunities for Non-Performing Loans Market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista JRG de Estudos Acadêmicos |
Texto Completo: | http://revistajrg.com/index.php/jrg/article/view/503 |
Resumo: | In the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology. |
id |
JRG_b139d0603815d0e907303509dfd2072c |
---|---|
oai_identifier_str |
oai:ojs2.revistajrg.com:article/503 |
network_acronym_str |
JRG |
network_name_str |
Revista JRG de Estudos Acadêmicos |
repository_id_str |
|
spelling |
Collection Score and the Opportunities for Non-Performing Loans Market Collection Score e as Oportunidades no Mercado de Non-Performing LoansNon-performing loansCollection ScoringRegressão LogísticaModelos EstatísticosCobrançaNon-performing loansCollection ScoringLogistic RegressionStatistical ModelsIn the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology.Na literatura acadêmica, modelos aplicados à área de crédito (chamados de credit scoring) são largamente explorados, ao passo que modelos aplicados à cobrança (chamados de collection scoring) são pouco abordados; da mesma maneira existem poucos artigos que tratam o mercado brasileiro de empréstimos bancários não pagos ou mais comumente chamados de non-performing-loans. Este trabalho traz como principais contribuições: a utilização de modelos de scoring na área de Cobrança, e trabalhar com dados non-performing-loans. O objetivo deste trabalho é, desenvolver um modelo de collection scoring por intermédio de Regressão Logística para identificar, em uma carteira de clientes com “créditos podres”, para verificar a possibilidade ajustar um bom modelo com altas taxas de acerto e apontar quais clientes têm maior propensão de pagar os créditos não performados. Os resultados mostram que o modelo funcionou bem para o público testado, obtendo um excelente ajuste (taxa de acerto superior a 83% nas amostras de desenvolvimento e de validação; KS de 68), apontando a viabilidade de sua aplicação.Editora JRG2021-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttp://revistajrg.com/index.php/jrg/article/view/50310.5281/zenodo.7702425ark:/57118/JRG.v4i9.503JRG Journal of Academic Studies; Vol. 4 No. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388JRG Journal of Academic Studies ; Vol. 4 Núm. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388JRG Journal of Academic Studies; V. 4 N. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388Revista JRG de Estudos Acadêmicos ; v. 4 n. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-3882595-166110.29327/257411.4.9-1reponame:Revista JRG de Estudos Acadêmicosinstname:Editora JRGinstacron:JRGporhttp://revistajrg.com/index.php/jrg/article/view/503/540ark:/57118/jrg.v4i9.503.g540https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGonçalves, Eric BacconiSantos, Francisco Carlos Barbosa dosBontempo, Paulo César2023-02-24T22:47:22Zoai:ojs2.revistajrg.com:article/503Revistahttp://revistajrg.com/index.php/jrgPRIhttp://revistajrg.com/index.php/jrg/oaiprofessorjonas@gmail.com||2595-16612595-1661opendoar:2023-02-24T22:47:22Revista JRG de Estudos Acadêmicos - Editora JRGfalse |
dc.title.none.fl_str_mv |
Collection Score and the Opportunities for Non-Performing Loans Market Collection Score e as Oportunidades no Mercado de Non-Performing Loans |
title |
Collection Score and the Opportunities for Non-Performing Loans Market |
spellingShingle |
Collection Score and the Opportunities for Non-Performing Loans Market Gonçalves, Eric Bacconi Non-performing loans Collection Scoring Regressão Logística Modelos Estatísticos Cobrança Non-performing loans Collection Scoring Logistic Regression Statistical Models |
title_short |
Collection Score and the Opportunities for Non-Performing Loans Market |
title_full |
Collection Score and the Opportunities for Non-Performing Loans Market |
title_fullStr |
Collection Score and the Opportunities for Non-Performing Loans Market |
title_full_unstemmed |
Collection Score and the Opportunities for Non-Performing Loans Market |
title_sort |
Collection Score and the Opportunities for Non-Performing Loans Market |
author |
Gonçalves, Eric Bacconi |
author_facet |
Gonçalves, Eric Bacconi Santos, Francisco Carlos Barbosa dos Bontempo, Paulo César |
author_role |
author |
author2 |
Santos, Francisco Carlos Barbosa dos Bontempo, Paulo César |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Gonçalves, Eric Bacconi Santos, Francisco Carlos Barbosa dos Bontempo, Paulo César |
dc.subject.por.fl_str_mv |
Non-performing loans Collection Scoring Regressão Logística Modelos Estatísticos Cobrança Non-performing loans Collection Scoring Logistic Regression Statistical Models |
topic |
Non-performing loans Collection Scoring Regressão Logística Modelos Estatísticos Cobrança Non-performing loans Collection Scoring Logistic Regression Statistical Models |
description |
In the academic literature, credit scoring models are widely studied, while collection scoring models are less explored; likewise, there are few articles dealing with the Brazilian non-performing-loans market. This work has as main contributions: the use of scoring models in the area of collection and working with non-performing-loans data. The objective of this paper is to develop a collection scoring model through Logistic Regression to identify, in a portfolio of clients with non-performing-loans, to verify if it is possible to adjust a good model and to indicate which clients are more likely to pay the debts nonperforming credits The results show that the model worked well for the database, obtaining an excellent fit (accuracy of classification greater than 83% for the two samples and KS=68), pointing the viability of this methodology. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos Pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistajrg.com/index.php/jrg/article/view/503 10.5281/zenodo.7702425 ark:/57118/JRG.v4i9.503 |
url |
http://revistajrg.com/index.php/jrg/article/view/503 |
identifier_str_mv |
10.5281/zenodo.7702425 ark:/57118/JRG.v4i9.503 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistajrg.com/index.php/jrg/article/view/503/540 ark:/57118/jrg.v4i9.503.g540 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora JRG |
publisher.none.fl_str_mv |
Editora JRG |
dc.source.none.fl_str_mv |
JRG Journal of Academic Studies; Vol. 4 No. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388 JRG Journal of Academic Studies ; Vol. 4 Núm. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388 JRG Journal of Academic Studies; V. 4 N. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388 Revista JRG de Estudos Acadêmicos ; v. 4 n. 9 (2021): Revista JRG de Estudos Acadêmicos ; 373-388 2595-1661 10.29327/257411.4.9-1 reponame:Revista JRG de Estudos Acadêmicos instname:Editora JRG instacron:JRG |
instname_str |
Editora JRG |
instacron_str |
JRG |
institution |
JRG |
reponame_str |
Revista JRG de Estudos Acadêmicos |
collection |
Revista JRG de Estudos Acadêmicos |
repository.name.fl_str_mv |
Revista JRG de Estudos Acadêmicos - Editora JRG |
repository.mail.fl_str_mv |
professorjonas@gmail.com|| |
_version_ |
1797068981252653056 |