Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do LNCC |
Texto Completo: | https://tede.lncc.br/handle/tede/319 |
Resumo: | The reliability of computational predictions of complex physical and biological events is one of the most relevant aspects of predictive computational science. Without a rigorous approach to assessing the reliability of models subject to various types of uncertainties, computational models are of little applicability in medical science or science in general. Thus, the success and clinical use of mathematical and computational models ultimately depend on how key issues in predictive science are addressed. In this doctoral dissertation research, we extend the two-scale hybrid model of tumor avascular growth developed previously to include mechanisms of intracellular regulation and angiogenesis. The vascular model has been implemented in a very flexible way, so that it is possible to include different mechanisms in the various scales as well as their simplification, aiming to focus on some specific dynamics. A three-dimensional version of the model has also been developed. Model parameters associated with the three scales (tissue, cellular and subcellular) were estimated at first to represent the typical dynamics of non-specific carcinomas. Usually, such parameters cannot be directly determined and should be inferred from experimental evidence/data. As a step in this direction, we have developed a platform for integrating data at the cellular scale of the multiscale model in order to calibrate it using a Bayesian approach. As the model is stochastic and of high computational cost, we study the application of several approximate Bayesian approach techniques. In particular, the Approximate Approximate Bayesian Computation (AABC) approach methodology, based on the use of a metamodel built from a limited number of model simulations, has proved to be computationally efficient. To further improve the construction of the metamodel, we developed a reduced model based on Gaussian processes (GPR). From parametric space samples via the sparse Latin hypercube method, we developed an adaptive strategy for the construction of the metamodel. ABC-GPR combination methods were used to calibrate the model at the cellular scale using in vitro data from the confluence of BT474 cells (human breast cancer cells). They present significantly higher computational efficiency, being potential strategies to be used for the calibration of our complete multiscale model. Because the developed parameter calibration approach is conceptually model-independent, it has the potential to be used in the inference of parameters of computationally expensive models used in various fields of science and engineering. |
id |
LNCC_383b80ee222c90b76e5ec53482f1db86 |
---|---|
oai_identifier_str |
oai:tede-server.lncc.br:tede/319 |
network_acronym_str |
LNCC |
network_name_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
repository_id_str |
|
spelling |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process SurrogatesCâncerProcessos gaussianoCNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::CANCEROLOGIAThe reliability of computational predictions of complex physical and biological events is one of the most relevant aspects of predictive computational science. Without a rigorous approach to assessing the reliability of models subject to various types of uncertainties, computational models are of little applicability in medical science or science in general. Thus, the success and clinical use of mathematical and computational models ultimately depend on how key issues in predictive science are addressed. In this doctoral dissertation research, we extend the two-scale hybrid model of tumor avascular growth developed previously to include mechanisms of intracellular regulation and angiogenesis. The vascular model has been implemented in a very flexible way, so that it is possible to include different mechanisms in the various scales as well as their simplification, aiming to focus on some specific dynamics. A three-dimensional version of the model has also been developed. Model parameters associated with the three scales (tissue, cellular and subcellular) were estimated at first to represent the typical dynamics of non-specific carcinomas. Usually, such parameters cannot be directly determined and should be inferred from experimental evidence/data. As a step in this direction, we have developed a platform for integrating data at the cellular scale of the multiscale model in order to calibrate it using a Bayesian approach. As the model is stochastic and of high computational cost, we study the application of several approximate Bayesian approach techniques. In particular, the Approximate Approximate Bayesian Computation (AABC) approach methodology, based on the use of a metamodel built from a limited number of model simulations, has proved to be computationally efficient. To further improve the construction of the metamodel, we developed a reduced model based on Gaussian processes (GPR). From parametric space samples via the sparse Latin hypercube method, we developed an adaptive strategy for the construction of the metamodel. ABC-GPR combination methods were used to calibrate the model at the cellular scale using in vitro data from the confluence of BT474 cells (human breast cancer cells). They present significantly higher computational efficiency, being potential strategies to be used for the calibration of our complete multiscale model. Because the developed parameter calibration approach is conceptually model-independent, it has the potential to be used in the inference of parameters of computationally expensive models used in various fields of science and engineering.A confiabilidade de predições computacionais de complexos eventos físicos e biológicos é um dos aspectos mais relevantes na ciência computacional preditiva. Sem uma abordagem rigorosa para avaliar a confiabilidade de modelos sujeitos à diversos tipos de incertezas, os modelos computacionais são de pouca aplicabilidade na ciência médica, ou na ciência em geral. Desta forma, o sucesso e o uso clínico de modelos matemáticos e computacionais depende, em última instância, de como são tratadas questões chaves da ciência preditiva. Nesta pesquisa de tese de doutorado, estendemos o modelo híbrido, em duas escalas, do crescimento avascular tumoral desenvolvido anteriormente para incluir mecanismos de regulação intracelular e de angiogênese. O modelo foi implementado de forma bastante flexível, sendo possível tanto a inclusão de diferentes mecanismos nas diversas escalas quanto sua simplificação, visando focar em alguma dinâmica específica. Foi também desenvolvida uma versão tri-dimensional do modelo. Os parâmetros do modelo associados às três escalas (tecido, celular e sub-celular) foram estimados, em um primeiro momento, para representar dinâmicas típicas de carcinomas não-específicos. Usualmente, tais parâmetros não podem ser determinados diretamente e devem ser inferidos a partir de evidências/dados experimentais. Como uma etapa nesta direção, desenvolvemos uma plataforma para a integração de dados na escala celular do modelo multiescala, com o fim de calibrá-lo utilizando uma abordagem Bayesiana. Como o modelo é estocástico e de alto custo computacional, estudamos a aplicação de diversas técnicas de abordagem Bayesiana aproximada. Em particular, a metodologia de Aproximação da Computação Bayesiana aproximada (AABC), baseada no uso de um metamodelo construído a partir de um número limitado de simulações do modelo, mostrou-se computacionalmente eficiente. Para aprimorar a construção do metamodelo, desenvolvemos um modelo reduzido baseado em processos Gaussianos (GPR). A partir de amostras do espaço paramétrico via método hipercubo latino esparso, desenvolvemos uma estratégia adaptativa para a construção do metamodelo. A combinação de métodos ABC- GPR foi utilizada para a calibração do modelo na escala celular utilizando dados in vitro da confluência das células BT474 (células de câncer de mama humano). Esta metodologia apresentou eficiência computacional significativamente superior, apresentando potencial para ser usada na calibração do modelo completo multiescala. Por ser conceitualmente independente de modelo, tem potencial para ser usado na inferência de parâmetros de modelos computacionalmente caros utilizados nas diversas áreas da ciência e engenharias.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorLaboratório Nacional de Computação CientíficaCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)BrasilLNCCPrograma de Pós-Graduação em Modelagem ComputacionalAlmeida, Regina Célia Cerqueira deLima, Ernesto Augusto Bueno da FonsecaAlmeida, Regina Célia Cerqueira deLoula, Abimael Fernando DouradoCoutinho, Alvaro Luiz Gayoso de AzeredoOrlande, Hélcio RangelCosta, Michel Iskin da SilveiraRocha, Heber Lima da2023-03-08T16:45:34Z2019-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfROCHA, H. L. Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates. 2019. 119 f.Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019.https://tede.lncc.br/handle/tede/319enghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCC2023-03-09T04:05:20Zoai:tede-server.lncc.br:tede/319Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-03-09T04:05:20Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false |
dc.title.none.fl_str_mv |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
title |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
spellingShingle |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates Rocha, Heber Lima da Câncer Processos gaussiano CNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::CANCEROLOGIA |
title_short |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
title_full |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
title_fullStr |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
title_full_unstemmed |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
title_sort |
Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates |
author |
Rocha, Heber Lima da |
author_facet |
Rocha, Heber Lima da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida, Regina Célia Cerqueira de Lima, Ernesto Augusto Bueno da Fonseca Almeida, Regina Célia Cerqueira de Loula, Abimael Fernando Dourado Coutinho, Alvaro Luiz Gayoso de Azeredo Orlande, Hélcio Rangel Costa, Michel Iskin da Silveira |
dc.contributor.author.fl_str_mv |
Rocha, Heber Lima da |
dc.subject.por.fl_str_mv |
Câncer Processos gaussiano CNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::CANCEROLOGIA |
topic |
Câncer Processos gaussiano CNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::CANCEROLOGIA |
description |
The reliability of computational predictions of complex physical and biological events is one of the most relevant aspects of predictive computational science. Without a rigorous approach to assessing the reliability of models subject to various types of uncertainties, computational models are of little applicability in medical science or science in general. Thus, the success and clinical use of mathematical and computational models ultimately depend on how key issues in predictive science are addressed. In this doctoral dissertation research, we extend the two-scale hybrid model of tumor avascular growth developed previously to include mechanisms of intracellular regulation and angiogenesis. The vascular model has been implemented in a very flexible way, so that it is possible to include different mechanisms in the various scales as well as their simplification, aiming to focus on some specific dynamics. A three-dimensional version of the model has also been developed. Model parameters associated with the three scales (tissue, cellular and subcellular) were estimated at first to represent the typical dynamics of non-specific carcinomas. Usually, such parameters cannot be directly determined and should be inferred from experimental evidence/data. As a step in this direction, we have developed a platform for integrating data at the cellular scale of the multiscale model in order to calibrate it using a Bayesian approach. As the model is stochastic and of high computational cost, we study the application of several approximate Bayesian approach techniques. In particular, the Approximate Approximate Bayesian Computation (AABC) approach methodology, based on the use of a metamodel built from a limited number of model simulations, has proved to be computationally efficient. To further improve the construction of the metamodel, we developed a reduced model based on Gaussian processes (GPR). From parametric space samples via the sparse Latin hypercube method, we developed an adaptive strategy for the construction of the metamodel. ABC-GPR combination methods were used to calibrate the model at the cellular scale using in vitro data from the confluence of BT474 cells (human breast cancer cells). They present significantly higher computational efficiency, being potential strategies to be used for the calibration of our complete multiscale model. Because the developed parameter calibration approach is conceptually model-independent, it has the potential to be used in the inference of parameters of computationally expensive models used in various fields of science and engineering. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-12 2023-03-08T16:45:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ROCHA, H. L. Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates. 2019. 119 f.Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019. https://tede.lncc.br/handle/tede/319 |
identifier_str_mv |
ROCHA, H. L. Continous-discrete approach of tumor growth: multiscale modeling and Bayesian inference using Gaussian Process Surrogates. 2019. 119 f.Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019. |
url |
https://tede.lncc.br/handle/tede/319 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
instname_str |
Laboratório Nacional de Computação Científica (LNCC) |
instacron_str |
LNCC |
institution |
LNCC |
reponame_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
collection |
Biblioteca Digital de Teses e Dissertações do LNCC |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC) |
repository.mail.fl_str_mv |
library@lncc.br||library@lncc.br |
_version_ |
1816081206914056192 |