Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial

Detalhes bibliográficos
Autor(a) principal: Martins, Marcelo Britto
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do LNCC
Texto Completo: https://tede.lncc.br/handle/tede/365
Resumo: The measurement of synchrophasors with Phasor Measurement Units (PMUs) is one of the key technologies for the development of smart electrical grids and has been increasingly used for the prevention of blackouts, protection, monitoring, and evaluation of network disturbances, among other possible applications [1]. With the increasing inclusion of renewable energy sources and non-linear loads in the electrical grid, the measurement of electrical quantities becomes more challenging, due to the greater presence of disturbances in the grid [2]. Anomalies such as harmonics, interharmonics, voltage dips and frequency variations are adverse conditions that can put the reliability of synchrophasor measurementes below acceptable limits for typical applications. For this reason, in recent years, electrical metrology, traditionally developed using steady state signal analysis, has turned to dynamic state signal analysis. For this, signal analysis tools have been used, in order to obtain greater accuracy of measurements and shorter response time in the measurement of quantities of interest [3 –9], or evaluate in real time the measurements reliability [10–12]. For metrological evaluation of PMUs, calibration systems have been developed in recent years in several National Metrology Laboratories around the world [13–16], including INMETRO, in Brazil [17–20]. In the context of dynamic regime synchrophasor measurement, the development of calibration systems capable of reproducing adverse conditions typically present in electrical networks is necessary, in order to metrologically characterize PMUs under more realistic conditions. In turn, the evaluation of the calibration systems themselves is a task that entails the use of techniques for analyzing digitized signals adapted to dynamic regime. Specifically, there is a growing concern with the local estimation of the electrical system frequency performed by PMUs, especially in networks with high insertion of renewable energies generation [21, 22], whose protection systems are particularly sensitive to errors in these measurements. In this thesis, motivated by the pressing needs of metrology laboratories, we propose and evaluate appropriate tools for analyzing AC signals that contain magnitude, phase and frequency steps. At first, we propose a parametric phasor estimator with a magnitude or phase step, using the Levenberg–Marquardt algorithm [23, 24], together with definitions of intermediate phasors for AC signals with a magnitude or step phase [19]. Then, we carried out pioneering work in the proposition of detectors and estimators for the location of step jumps in the magnitude, phase and frequency of an AC signal, based on analyses of instantaneous functions of magnitude and phase of the analytical Hilbert signal associated with the AC signal [20]. We then evolved such analyses for the development of electrical system frequency estimators from AC signals with one step in magnitude, phase or frequency. The signal analysis techniques used in the proposed electrical system frequency estimators allow, additionally, to estimate the height of the frequency step, which also allowed us to propose discriminators of AC signals containing a step in frequency from those containing a step in magnitude or phase. Such discrimination is particularly desirable to improve the decision making performance of network protection systems with high insertion of energy generation from renewable sources, such as wind and solar. In all cases, we performed extensive Monte Carlo simulations to estimate mean errors and uncertainties associated with the measurements performed by each provided estimator, as well as its performance sensitivity with respect to several parameters. This allows estimating the contribution of each estimator to the total uncertainty of a synchrophasor estimation system that makes use of it. Finally, we implemented the proposed estimators in prototypes of PMU calibration systems at INMETRO’s Laboratory of Metrology in Electric Energy, which allowed us to estimate the total uncertainty of measurements, assess the suitability of the equipment used to carry out standardized tests, and provide subsidies for discussions on the development of synchrophasor technology and possible revisions to related standards.
id LNCC_8a1a229063c7c032caae798d91f622d6
oai_identifier_str oai:tede-server.lncc.br:tede/365
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Esquef, Paulo Antonio AndradeVasconcellos, Renata de Barros eEsquef, Paulo Antonio AndradePorto, Fábio André MachadoCoury, Denis ViníciusDuque, Carlos AugustoBoaventura, Wallace do Coutohttp://lattes.cnpq.br/5838859357500318Martins, Marcelo Britto2023-05-02T16:54:04Z2022-11-23MARTINS, M. B. Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial. 2022. 198 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2022.https://tede.lncc.br/handle/tede/365The measurement of synchrophasors with Phasor Measurement Units (PMUs) is one of the key technologies for the development of smart electrical grids and has been increasingly used for the prevention of blackouts, protection, monitoring, and evaluation of network disturbances, among other possible applications [1]. With the increasing inclusion of renewable energy sources and non-linear loads in the electrical grid, the measurement of electrical quantities becomes more challenging, due to the greater presence of disturbances in the grid [2]. Anomalies such as harmonics, interharmonics, voltage dips and frequency variations are adverse conditions that can put the reliability of synchrophasor measurementes below acceptable limits for typical applications. For this reason, in recent years, electrical metrology, traditionally developed using steady state signal analysis, has turned to dynamic state signal analysis. For this, signal analysis tools have been used, in order to obtain greater accuracy of measurements and shorter response time in the measurement of quantities of interest [3 –9], or evaluate in real time the measurements reliability [10–12]. For metrological evaluation of PMUs, calibration systems have been developed in recent years in several National Metrology Laboratories around the world [13–16], including INMETRO, in Brazil [17–20]. In the context of dynamic regime synchrophasor measurement, the development of calibration systems capable of reproducing adverse conditions typically present in electrical networks is necessary, in order to metrologically characterize PMUs under more realistic conditions. In turn, the evaluation of the calibration systems themselves is a task that entails the use of techniques for analyzing digitized signals adapted to dynamic regime. Specifically, there is a growing concern with the local estimation of the electrical system frequency performed by PMUs, especially in networks with high insertion of renewable energies generation [21, 22], whose protection systems are particularly sensitive to errors in these measurements. In this thesis, motivated by the pressing needs of metrology laboratories, we propose and evaluate appropriate tools for analyzing AC signals that contain magnitude, phase and frequency steps. At first, we propose a parametric phasor estimator with a magnitude or phase step, using the Levenberg–Marquardt algorithm [23, 24], together with definitions of intermediate phasors for AC signals with a magnitude or step phase [19]. Then, we carried out pioneering work in the proposition of detectors and estimators for the location of step jumps in the magnitude, phase and frequency of an AC signal, based on analyses of instantaneous functions of magnitude and phase of the analytical Hilbert signal associated with the AC signal [20]. We then evolved such analyses for the development of electrical system frequency estimators from AC signals with one step in magnitude, phase or frequency. The signal analysis techniques used in the proposed electrical system frequency estimators allow, additionally, to estimate the height of the frequency step, which also allowed us to propose discriminators of AC signals containing a step in frequency from those containing a step in magnitude or phase. Such discrimination is particularly desirable to improve the decision making performance of network protection systems with high insertion of energy generation from renewable sources, such as wind and solar. In all cases, we performed extensive Monte Carlo simulations to estimate mean errors and uncertainties associated with the measurements performed by each provided estimator, as well as its performance sensitivity with respect to several parameters. This allows estimating the contribution of each estimator to the total uncertainty of a synchrophasor estimation system that makes use of it. Finally, we implemented the proposed estimators in prototypes of PMU calibration systems at INMETRO’s Laboratory of Metrology in Electric Energy, which allowed us to estimate the total uncertainty of measurements, assess the suitability of the equipment used to carry out standardized tests, and provide subsidies for discussions on the development of synchrophasor technology and possible revisions to related standards.A medição de sincrofasores através de Unidades de Medição Fasorial (UMFs), ou Phasor Measurement Units (PMUs), é uma das tecnologias chave para o desenvolvimento das chamadas redes elétricas inteligentes e vem sendo cada vez mais utilizada na prevenção de blecautes, na proteção, monitoramento e avaliação de distúrbios na rede, dentre outras possíveis aplicações [1]. Com a crescente inserção de fontes renováveis de energia e cargas não-lineares no sistema elétrico, a medição de grandezas elétricas se torna mais desafiadora, pela maior presença de distúrbios na rede [2]. Anomalias como harmônicos, inter-harmônicos, afundamentos de tensão e variações de frequência são condições adversas que podem provocar medidas de sincrofasores cuja confiabilidade está abaixo de limites aceitáveis para aplicações típicas. Por essa razão, nos últimos anos, a metrologia elétrica, tradicionalmente desenvolvida utilizando análise de sinais em regime estacionário, tem se voltado para a análise de sinais em regime dinâmico. Para isso, diversas ferramentas de análise de sinais têm sido utilizadas, com o objetivo de obter uma maior exatidão das medidas e menor tempo de resposta na medição de grandezas de interesse [3–9], ou ainda avaliar em tempo real a confiabilidade das medições [10–12]. Para a avaliação metrológica de PMUs, sistemas de calibração têm sido desenvolvidos nos últimos anos em alguns laboratórios nacionais de metrologia pelo mundo [13–16], dentre os quais o INMETRO, no Brasil [17 –20]. No contexto de medição de sincrofasores em regime dinâmico, é necessário o desenvolvimento de sistemas de calibração de PMUs capazes de reproduzir condições adversas tipicamente presentes em redes elétricas para, com isso, caracterizar metrologicamente PMUs em condições mais realísticas. Por sua vez, a avaliação dos próprios sistemas de calibração é tarefa que enseja o uso de técnicas de análise de sinais digitalizados adaptadas para regime dinâmico. Especificamente, nota-se uma preocupação crescente com a estimação local da frequência do sistema elétrico realizada por PMUs, em especial em redes com alta inserção de geração de energias renováveis [21, 22], cujos sistemas de proteção são particularmente sensíveis a erros nessas medidas. Nesta tese, no intuito de avançar o conhecimento acerca da estimação de sincrofasor e frequência do sistema elétrico em regime dinâmico, em especial aplicado a sistemas de calibração de PMUs, propomos e avaliamos ferramental apropriado para análise de sinais CA que contenham degraus de magnitude, fase e frequência. Em um primeiro momento, propomos um estimador paramétrico de fasor com um degrau de magnitude ou fase, usando o algoritmo de Levenberg–Marquardt [23, 24], em conjunto com definições de fasores intermediários para sinais CA com um degrau de magnitude ou fase [19]. Em seguida, realizamos trabalho pioneiro na proposição de detectores e estimadores de localização de saltos em degrau na magnitude, fase e frequência de um sinal CA, com base em análises de funções instantâneas de magnitude e fase do sinal analítico de Hilbert associado ao sinal CA [20]. Evoluímos então tais análises para o desenvolvimento de estimadores de frequência do sistema elétrico a partir de sinais CA com um degrau de magnitude, fase ou frequência. As técnicas de análise utilizadas no projeto dos estimadores de frequência do sistema elétrico propostos permitem, adicionalmente, estimar a altura do salto de frequência, o que nos permitiu também propor discriminadores de sinais CA contendo um degrau em frequência daqueles contendo degrau de magnitude ou de fase. Tal discriminação é particularmente desejável para melhorar o desempenho decisório em sistemas de proteção de redes com alta inserção de geração de energia a partir de fontes renováveis como eólica e solar. Em todos os casos, realizamos extensivas simulações de Monte Carlo para estimar erros médios e incertezas associados às medições realizadas por cada estimador proposto, bem como a sensibilidade de seu desempenho com relação a diversos parâmetros. Isso permite estimar a contribuição de cada estimador na incerteza total de um sistema de estimação de sincrofasor que o utilize. Finalmente, implementamos os estimadores propostos em protótipos de sistemas de calibração de PMUs no Laboratório de Metrologia em Energia Elétrica do INMETRO, o que nos permitiu estimar a incerteza total das medições, avaliar a adequabilidade dos equipamentos utilizados para a realização de testes padronizados e fornecer subsídios experimentais para discussões sobre o desenvolvimento da tecnologia de sincrofasores e possíveis revisões das normas relacionadas.Submitted by Patrícia Vieira Silva (library@lncc.br) on 2023-05-02T16:51:30Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_Marcelo Britto Martins.pdf: 10185875 bytes, checksum: 8def1b98f46c8155d3abf15411ca2abc (MD5)Approved for entry into archive by Patrícia Vieira Silva (library@lncc.br) on 2023-05-02T16:53:44Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_Marcelo Britto Martins.pdf: 10185875 bytes, checksum: 8def1b98f46c8155d3abf15411ca2abc (MD5)Made available in DSpace on 2023-05-02T16:54:04Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_Marcelo Britto Martins.pdf: 10185875 bytes, checksum: 8def1b98f46c8155d3abf15411ca2abc (MD5) Previous issue date: 2022-11-23application/pdfhttp://tede-server.lncc.br:8080/retrieve/1579/Tese_Marcelo%20Britto%20Martins.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRedes elétricas inteligentesUnidades de medição fasorialCalibraçãoMetrologiaSincrofasoresAfundamentos de tensãoCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICAEstimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCTHUMBNAILTese_Marcelo Britto Martins.pdf.jpgTese_Marcelo Britto Martins.pdf.jpgimage/jpeg4073http://tede-server.lncc.br:8080/tede/bitstream/tede/365/7/Tese_Marcelo+Britto+Martins.pdf.jpg9780058f58a96f09d7935d9f57c4f737MD57TEXTTese_Marcelo Britto Martins.pdf.txtTese_Marcelo Britto Martins.pdf.txttext/plain447656http://tede-server.lncc.br:8080/tede/bitstream/tede/365/6/Tese_Marcelo+Britto+Martins.pdf.txtb3291b9b907e6163154922d639106962MD56ORIGINALTese_Marcelo Britto Martins.pdfTese_Marcelo Britto Martins.pdfapplication/pdf10185875http://tede-server.lncc.br:8080/tede/bitstream/tede/365/5/Tese_Marcelo+Britto+Martins.pdf8def1b98f46c8155d3abf15411ca2abcMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede-server.lncc.br:8080/tede/bitstream/tede/365/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/365/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/365/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/365/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/3652023-05-03 01:46:01.402oai:tede-server.lncc.br:tede/365Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-05-03T04:46:01Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.por.fl_str_mv Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
title Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
spellingShingle Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
Martins, Marcelo Britto
Redes elétricas inteligentes
Unidades de medição fasorial
Calibração
Metrologia
Sincrofasores
Afundamentos de tensão
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICA
title_short Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
title_full Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
title_fullStr Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
title_full_unstemmed Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
title_sort Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial
author Martins, Marcelo Britto
author_facet Martins, Marcelo Britto
author_role author
dc.contributor.advisor1.fl_str_mv Esquef, Paulo Antonio Andrade
dc.contributor.advisor-co1.fl_str_mv Vasconcellos, Renata de Barros e
dc.contributor.referee1.fl_str_mv Esquef, Paulo Antonio Andrade
dc.contributor.referee2.fl_str_mv Porto, Fábio André Machado
dc.contributor.referee3.fl_str_mv Coury, Denis Vinícius
dc.contributor.referee4.fl_str_mv Duque, Carlos Augusto
dc.contributor.referee5.fl_str_mv Boaventura, Wallace do Couto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5838859357500318
dc.contributor.author.fl_str_mv Martins, Marcelo Britto
contributor_str_mv Esquef, Paulo Antonio Andrade
Vasconcellos, Renata de Barros e
Esquef, Paulo Antonio Andrade
Porto, Fábio André Machado
Coury, Denis Vinícius
Duque, Carlos Augusto
Boaventura, Wallace do Couto
dc.subject.por.fl_str_mv Redes elétricas inteligentes
Unidades de medição fasorial
Calibração
Metrologia
Sincrofasores
Afundamentos de tensão
topic Redes elétricas inteligentes
Unidades de medição fasorial
Calibração
Metrologia
Sincrofasores
Afundamentos de tensão
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICA
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICA
description The measurement of synchrophasors with Phasor Measurement Units (PMUs) is one of the key technologies for the development of smart electrical grids and has been increasingly used for the prevention of blackouts, protection, monitoring, and evaluation of network disturbances, among other possible applications [1]. With the increasing inclusion of renewable energy sources and non-linear loads in the electrical grid, the measurement of electrical quantities becomes more challenging, due to the greater presence of disturbances in the grid [2]. Anomalies such as harmonics, interharmonics, voltage dips and frequency variations are adverse conditions that can put the reliability of synchrophasor measurementes below acceptable limits for typical applications. For this reason, in recent years, electrical metrology, traditionally developed using steady state signal analysis, has turned to dynamic state signal analysis. For this, signal analysis tools have been used, in order to obtain greater accuracy of measurements and shorter response time in the measurement of quantities of interest [3 –9], or evaluate in real time the measurements reliability [10–12]. For metrological evaluation of PMUs, calibration systems have been developed in recent years in several National Metrology Laboratories around the world [13–16], including INMETRO, in Brazil [17–20]. In the context of dynamic regime synchrophasor measurement, the development of calibration systems capable of reproducing adverse conditions typically present in electrical networks is necessary, in order to metrologically characterize PMUs under more realistic conditions. In turn, the evaluation of the calibration systems themselves is a task that entails the use of techniques for analyzing digitized signals adapted to dynamic regime. Specifically, there is a growing concern with the local estimation of the electrical system frequency performed by PMUs, especially in networks with high insertion of renewable energies generation [21, 22], whose protection systems are particularly sensitive to errors in these measurements. In this thesis, motivated by the pressing needs of metrology laboratories, we propose and evaluate appropriate tools for analyzing AC signals that contain magnitude, phase and frequency steps. At first, we propose a parametric phasor estimator with a magnitude or phase step, using the Levenberg–Marquardt algorithm [23, 24], together with definitions of intermediate phasors for AC signals with a magnitude or step phase [19]. Then, we carried out pioneering work in the proposition of detectors and estimators for the location of step jumps in the magnitude, phase and frequency of an AC signal, based on analyses of instantaneous functions of magnitude and phase of the analytical Hilbert signal associated with the AC signal [20]. We then evolved such analyses for the development of electrical system frequency estimators from AC signals with one step in magnitude, phase or frequency. The signal analysis techniques used in the proposed electrical system frequency estimators allow, additionally, to estimate the height of the frequency step, which also allowed us to propose discriminators of AC signals containing a step in frequency from those containing a step in magnitude or phase. Such discrimination is particularly desirable to improve the decision making performance of network protection systems with high insertion of energy generation from renewable sources, such as wind and solar. In all cases, we performed extensive Monte Carlo simulations to estimate mean errors and uncertainties associated with the measurements performed by each provided estimator, as well as its performance sensitivity with respect to several parameters. This allows estimating the contribution of each estimator to the total uncertainty of a synchrophasor estimation system that makes use of it. Finally, we implemented the proposed estimators in prototypes of PMU calibration systems at INMETRO’s Laboratory of Metrology in Electric Energy, which allowed us to estimate the total uncertainty of measurements, assess the suitability of the equipment used to carry out standardized tests, and provide subsidies for discussions on the development of synchrophasor technology and possible revisions to related standards.
publishDate 2022
dc.date.issued.fl_str_mv 2022-11-23
dc.date.accessioned.fl_str_mv 2023-05-02T16:54:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARTINS, M. B. Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial. 2022. 198 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2022.
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/365
identifier_str_mv MARTINS, M. B. Estimação de parâmetros de sinais com saltos de magnitude, fase ou frequência com aplicações na calibração de unidades de medição fasorial. 2022. 198 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2022.
url https://tede.lncc.br/handle/tede/365
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv LNCC
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
bitstream.url.fl_str_mv http://tede-server.lncc.br:8080/tede/bitstream/tede/365/7/Tese_Marcelo+Britto+Martins.pdf.jpg
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/6/Tese_Marcelo+Britto+Martins.pdf.txt
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/5/Tese_Marcelo+Britto+Martins.pdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/2/license_url
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/3/license_text
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/4/license_rdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/365/1/license.txt
bitstream.checksum.fl_str_mv 9780058f58a96f09d7935d9f57c4f737
b3291b9b907e6163154922d639106962
8def1b98f46c8155d3abf15411ca2abc
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1797683220141047808