Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes

Detalhes bibliográficos
Autor(a) principal: Colpo, Rodrigo Amarante
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do LNCC
Texto Completo: https://tede.lncc.br/handle/tede/307
Resumo: Genome-scale metabolic reconstructions are typically created from an annotated genome. However, for not knowing all the functions of the annotated genes, or all the genes in the genome, it is not known all possible reactions that exist in a organism, making metabolic models systematically incomplete. Evidence of this fact is that, if models are created only using an annotated genome, it will be unable to "grow" in conditions where growth was observed in vitro. For the model to "grow" in silico it is necessary to gap fill the model, adding reactions to the model that were not identified during the genome annotation, allowing previously blocked reactions to be activated. This change occurs because the added reactions allowed the substrates of the blocked reactions to be produced, or because they prevented products from the blocked reactions to accumulate inside the network. Genome-scale metabolic models can be semi automatically created using tools that require very little user's experience. However, models created by such tools use metabolites and reactions identifiers that are not compatible with identifiers from KEGG and BiGG Models, what is necessary for the gap filling procedure. Additional problem is the comparison between draft and curated models, since curated models often use BiGG Models identifiers, while automatically created models usually use SEED's. The present work proposes a methodology to translate draft models, from SEED identifiers to BiGG Models identifiers, and translate the KEGG reactions database, from the KEGG identifiers to the BiGG Models identifiers. So that these reactions can be easily used to gap fill the model. Also, based on reactions used by models available in the BiGG Models' database, an interactive menu was created to allow the user to build a customized set of reactions to be used during the gap filling. Finally, all the translated reactions must be stoichiometrically balanced. With the draft model and the reaction dataset created, the gap filling can be performed. The gap filling method developed in this work uses a newly developed method for metabolic network expansion, while more traditional gap filling methods are based on FBA. Therefore, we first studied the necessary conditions for the FBA results and the metabolic networks expansion to be equivalent. With these conditions assured, the method focus on unblocking from the draft model as many original reactions as possible, finding a solution that minimizes the number of reactions added to the model’s final version.
id LNCC_d85fe5d878e5973396ee604e38d1b45b
oai_identifier_str oai:tede-server.lncc.br:tede/307
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Nicolás, Marisa FabianaRamos, Pablo Ivan PereiraNicolás , Marisa FabianaGuedes, Luciane Prioli CiapinaSilva, Fabrício Alves Barbosa dahttp://lattes.cnpq.br/1823103947133005Colpo, Rodrigo Amarante2023-02-28T19:09:25Z2019-02-25COLPO, R. A. Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes. 2019. 73 f. Dissertação (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019.https://tede.lncc.br/handle/tede/307Genome-scale metabolic reconstructions are typically created from an annotated genome. However, for not knowing all the functions of the annotated genes, or all the genes in the genome, it is not known all possible reactions that exist in a organism, making metabolic models systematically incomplete. Evidence of this fact is that, if models are created only using an annotated genome, it will be unable to "grow" in conditions where growth was observed in vitro. For the model to "grow" in silico it is necessary to gap fill the model, adding reactions to the model that were not identified during the genome annotation, allowing previously blocked reactions to be activated. This change occurs because the added reactions allowed the substrates of the blocked reactions to be produced, or because they prevented products from the blocked reactions to accumulate inside the network. Genome-scale metabolic models can be semi automatically created using tools that require very little user's experience. However, models created by such tools use metabolites and reactions identifiers that are not compatible with identifiers from KEGG and BiGG Models, what is necessary for the gap filling procedure. Additional problem is the comparison between draft and curated models, since curated models often use BiGG Models identifiers, while automatically created models usually use SEED's. The present work proposes a methodology to translate draft models, from SEED identifiers to BiGG Models identifiers, and translate the KEGG reactions database, from the KEGG identifiers to the BiGG Models identifiers. So that these reactions can be easily used to gap fill the model. Also, based on reactions used by models available in the BiGG Models' database, an interactive menu was created to allow the user to build a customized set of reactions to be used during the gap filling. Finally, all the translated reactions must be stoichiometrically balanced. With the draft model and the reaction dataset created, the gap filling can be performed. The gap filling method developed in this work uses a newly developed method for metabolic network expansion, while more traditional gap filling methods are based on FBA. Therefore, we first studied the necessary conditions for the FBA results and the metabolic networks expansion to be equivalent. With these conditions assured, the method focus on unblocking from the draft model as many original reactions as possible, finding a solution that minimizes the number of reactions added to the model’s final version.Modelos metabólicos em escala genômica são tipicamente criados a partir de um genoma anotado. Entretanto, por não se conhecer todas as funções dos genes anotados, ou por não se conhecer todos os genes do genoma, não se conhecem todas as reações possíveis de existir no organismo, fazendo com que modelos metabólicos sejam sistematicamente incompletos. Evidência deste fato é a incapacidade de modelos de reproduzir in silico o crescimento do organismo observado in vitro, se os modelos forem criados unicamente a partir de um genoma anotado. Para que um modelo possa “crescer”, é necessário realizar o gap filling do modelo, ou seja, acrescentar ao modelo reações que não foram identificadas durante a anotação do genoma, permitindo que reações anteriormente bloqueadas tornem-se capazes de estar ativas. Essa mudança ocorre porque as reações adicionadas permitiram que fossem produzidos os substratos das reações bloqueadas, ou porque evitaram que produtos produzidos pelas reações bloqueadas se acumulassem dentro da rede. Redes metabólicas em escala genômica podem ser construídas utilizando ferramentas que permitem a criação semiautomática de modelos com muito pouca experiência do usuário. Entretanto, os modelos criados por tais ferramentas utilizam nomenclaturas de metabólitos e reações que impossibilitam a utilização de banco de reações do KEGG e do BiGG Models para o procedimento de gap filling da rede metabólica. Dificuldade adicional é a comparação entre os modelos draft e os modelos curados, uma vez que modelos curados costumam utilizar nomenclaturas do BiGG Models, enquanto modelos automáticos costumam utilizar nomenclatura do SEED. O presente trabalho desenvolveu uma ferramenta de tradução de modelos draft, da nomenclatura SEED para a nomenclatura BiGG Models, e traduzir o banco de reações do KEGG, da nomenclatura KEGG para a nomenclatura BiGG Models, para que as suas reações possam ser utilizadas para o gap filling da rede metabólica. Além disso, desenvolveu-se menu interativo para que o usuário possa criar um conjunto personalizado de reações a ser utilizado durante o gap filling, tendo por base as reações utilizadas por modelos disponibilizados no BiGG Models. Por fim, todas as reações do modelo traduzido e do conjunto de reações a ser utilizado durante o gap filling são estequiometricamente balanceadas, a fim de que não haja fluxo em reações quando não é disponibilizado reações que simulem um meio de cultura. Com o modelo draft e o banco de reações traduzidas e estequiometricamente balanceadas, foi realizado o gap filling do modelo. Ao contrário dos métodos de gap filling mais tradicionais, que são baseados em flux balance analysis (FBA), aqui se utilizou o método de expansão de redes metabólicas (ERM). Por isso, primeiro se estudou as condições necessárias para que os resultados de FBA e ERM fossem equivalentes. Com essas condições asseguradas, o método não se concentra em desbloquear apenas uma única reação objetivo, mas em desbloquear o maior número possível de reações originais do modelo draft, encontrando uma solução ótima que minimiza o número de reações adicionadas à versão final do modelo.Submitted by Parícia Vieira Silva (library@lncc.br) on 2023-02-28T19:05:32Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Rodrigo Colpo_Dissertacao 2019.pdf: 2429064 bytes, checksum: c96119a6d14bb5ca5b05ffe88c35a55b (MD5)Approved for entry into archive by Parícia Vieira Silva (library@lncc.br) on 2023-02-28T19:08:11Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Rodrigo Colpo_Dissertacao 2019.pdf: 2429064 bytes, checksum: c96119a6d14bb5ca5b05ffe88c35a55b (MD5)Made available in DSpace on 2023-02-28T19:09:25Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Rodrigo Colpo_Dissertacao 2019.pdf: 2429064 bytes, checksum: c96119a6d14bb5ca5b05ffe88c35a55b (MD5) Previous issue date: 2019-02-25Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfhttp://tede-server.lncc.br:8080/retrieve/1121/Rodrigo%20Colpo_Dissertacao%202019.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessBioinformáticaSimulação (Computadores)Gap FillingCNPQ::CIENCIAS BIOLOGICAS::GENETICAUm novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/307/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede-server.lncc.br:8080/tede/bitstream/tede/307/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/307/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/307/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALRodrigo Colpo_Dissertacao 2019.pdfRodrigo Colpo_Dissertacao 2019.pdfapplication/pdf2429064http://tede-server.lncc.br:8080/tede/bitstream/tede/307/5/Rodrigo+Colpo_Dissertacao+2019.pdfc96119a6d14bb5ca5b05ffe88c35a55bMD55TEXTRodrigo Colpo_Dissertacao 2019.pdf.txtRodrigo Colpo_Dissertacao 2019.pdf.txttext/plain156668http://tede-server.lncc.br:8080/tede/bitstream/tede/307/6/Rodrigo+Colpo_Dissertacao+2019.pdf.txtc51295c7cfd60b6d938bca7ac521964aMD56THUMBNAILRodrigo Colpo_Dissertacao 2019.pdf.jpgRodrigo Colpo_Dissertacao 2019.pdf.jpgimage/jpeg2045http://tede-server.lncc.br:8080/tede/bitstream/tede/307/7/Rodrigo+Colpo_Dissertacao+2019.pdf.jpg4c39551b668da71e3f2b825c5979bba4MD57tede/3072023-03-01 01:15:00.196oai:tede-server.lncc.br:tede/307Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-03-01T04:15Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.por.fl_str_mv Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
title Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
spellingShingle Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
Colpo, Rodrigo Amarante
Bioinformática
Simulação (Computadores)
Gap Filling
CNPQ::CIENCIAS BIOLOGICAS::GENETICA
title_short Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
title_full Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
title_fullStr Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
title_full_unstemmed Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
title_sort Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes
author Colpo, Rodrigo Amarante
author_facet Colpo, Rodrigo Amarante
author_role author
dc.contributor.advisor1.fl_str_mv Nicolás, Marisa Fabiana
dc.contributor.advisor2.fl_str_mv Ramos, Pablo Ivan Pereira
dc.contributor.referee1.fl_str_mv Nicolás , Marisa Fabiana
dc.contributor.referee2.fl_str_mv Guedes, Luciane Prioli Ciapina
dc.contributor.referee3.fl_str_mv Silva, Fabrício Alves Barbosa da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1823103947133005
dc.contributor.author.fl_str_mv Colpo, Rodrigo Amarante
contributor_str_mv Nicolás, Marisa Fabiana
Ramos, Pablo Ivan Pereira
Nicolás , Marisa Fabiana
Guedes, Luciane Prioli Ciapina
Silva, Fabrício Alves Barbosa da
dc.subject.por.fl_str_mv Bioinformática
Simulação (Computadores)
topic Bioinformática
Simulação (Computadores)
Gap Filling
CNPQ::CIENCIAS BIOLOGICAS::GENETICA
dc.subject.eng.fl_str_mv Gap Filling
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::GENETICA
description Genome-scale metabolic reconstructions are typically created from an annotated genome. However, for not knowing all the functions of the annotated genes, or all the genes in the genome, it is not known all possible reactions that exist in a organism, making metabolic models systematically incomplete. Evidence of this fact is that, if models are created only using an annotated genome, it will be unable to "grow" in conditions where growth was observed in vitro. For the model to "grow" in silico it is necessary to gap fill the model, adding reactions to the model that were not identified during the genome annotation, allowing previously blocked reactions to be activated. This change occurs because the added reactions allowed the substrates of the blocked reactions to be produced, or because they prevented products from the blocked reactions to accumulate inside the network. Genome-scale metabolic models can be semi automatically created using tools that require very little user's experience. However, models created by such tools use metabolites and reactions identifiers that are not compatible with identifiers from KEGG and BiGG Models, what is necessary for the gap filling procedure. Additional problem is the comparison between draft and curated models, since curated models often use BiGG Models identifiers, while automatically created models usually use SEED's. The present work proposes a methodology to translate draft models, from SEED identifiers to BiGG Models identifiers, and translate the KEGG reactions database, from the KEGG identifiers to the BiGG Models identifiers. So that these reactions can be easily used to gap fill the model. Also, based on reactions used by models available in the BiGG Models' database, an interactive menu was created to allow the user to build a customized set of reactions to be used during the gap filling. Finally, all the translated reactions must be stoichiometrically balanced. With the draft model and the reaction dataset created, the gap filling can be performed. The gap filling method developed in this work uses a newly developed method for metabolic network expansion, while more traditional gap filling methods are based on FBA. Therefore, we first studied the necessary conditions for the FBA results and the metabolic networks expansion to be equivalent. With these conditions assured, the method focus on unblocking from the draft model as many original reactions as possible, finding a solution that minimizes the number of reactions added to the model’s final version.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-25
dc.date.accessioned.fl_str_mv 2023-02-28T19:09:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COLPO, R. A. Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes. 2019. 73 f. Dissertação (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019.
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/307
identifier_str_mv COLPO, R. A. Um novo algoritmo de gap filling de rede metabólica aplicando estratégia de expansão de redes. 2019. 73 f. Dissertação (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2019.
url https://tede.lncc.br/handle/tede/307
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv LNCC
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
bitstream.url.fl_str_mv http://tede-server.lncc.br:8080/tede/bitstream/tede/307/1/license.txt
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/2/license_url
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/3/license_text
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/4/license_rdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/5/Rodrigo+Colpo_Dissertacao+2019.pdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/6/Rodrigo+Colpo_Dissertacao+2019.pdf.txt
http://tede-server.lncc.br:8080/tede/bitstream/tede/307/7/Rodrigo+Colpo_Dissertacao+2019.pdf.jpg
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
c96119a6d14bb5ca5b05ffe88c35a55b
c51295c7cfd60b6d938bca7ac521964a
4c39551b668da71e3f2b825c5979bba4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1797683219321061376