Conditional CAPM with learning applied to the Brazilian stock market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | RAM. Revista de Administração Mackenzie |
Texto Completo: | https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113 |
Resumo: | Asset pricing models represent one of the most discussed and researched areas in finance. They are widely used in a theoretical and practical manner to model and predict risk and return to price securities and portfolios as well as in corporate finance to estimate the cost of capital and rank investment projects. They provide a usable measure of risk that helps managers and investors determine what return they deserve for putting their money at risk. The objective of this paper is to analyze the performance of the learning-augmented conditional CAPM model of Adrian e Franzoni (2009) when applied to the returns of the most liquid stocks transactioned in the Brazilian stock market from 1987 to 2010. Adrian & Franzoni, in their paper, complemented the conditional CAPM literature by modeling a new type of time-variation in conditional betas. In this environment, investors form expectations about the long run level of factor loadings from the observation of realized returns of exogenous variables. As a direct consequence of this assumption, conditional betas are modeled using the Kalman filter. Using data of 25 portfolios sorted by size and book-to-market ratio, the authors concluded that the learning-augmented conditional CAPM is able to substantially reduce the pricing errors when compared to the original version of CAPM. Thus, we contribute to the pricing asset literature, as we evaluate whether this model is able to reduce pricing errors in relation to its original version when applied to Brazilian individual asset data. The results of this article showed a decreasing in the pricing errors of learning-augmented conditional CAPM in relation to CAPM in its original version. Our empirical results suggest that the learning about betas should be taken into account when estimating both conditional and unconditional CAPM. |
id |
MACKENZIE_68b58a9d820d932963c690bd37055d29 |
---|---|
oai_identifier_str |
oai:ojs.editorarevistas.mackenzie.br:article/4113 |
network_acronym_str |
MACKENZIE |
network_name_str |
RAM. Revista de Administração Mackenzie |
repository_id_str |
|
spelling |
Conditional CAPM with learning applied to the Brazilian stock marketCAPM condicional con el aprendizaje aplicado a la bolsa de valores brasileñaCAPM Condicional com Aprendizagem Aplicado ao Mercado de Ações BrasileiroConditional CAPMKalman filterForecastingBeta coefficientPricing errorsCAPM condicionalFiltros de KalmanPrevisiónCoeficiente betaErrores de valoraciónCAPM condicionalFiltro de KalmanPrevisãoCoeficiente betaErros de apreçamentoAsset pricing models represent one of the most discussed and researched areas in finance. They are widely used in a theoretical and practical manner to model and predict risk and return to price securities and portfolios as well as in corporate finance to estimate the cost of capital and rank investment projects. They provide a usable measure of risk that helps managers and investors determine what return they deserve for putting their money at risk. The objective of this paper is to analyze the performance of the learning-augmented conditional CAPM model of Adrian e Franzoni (2009) when applied to the returns of the most liquid stocks transactioned in the Brazilian stock market from 1987 to 2010. Adrian & Franzoni, in their paper, complemented the conditional CAPM literature by modeling a new type of time-variation in conditional betas. In this environment, investors form expectations about the long run level of factor loadings from the observation of realized returns of exogenous variables. As a direct consequence of this assumption, conditional betas are modeled using the Kalman filter. Using data of 25 portfolios sorted by size and book-to-market ratio, the authors concluded that the learning-augmented conditional CAPM is able to substantially reduce the pricing errors when compared to the original version of CAPM. Thus, we contribute to the pricing asset literature, as we evaluate whether this model is able to reduce pricing errors in relation to its original version when applied to Brazilian individual asset data. The results of this article showed a decreasing in the pricing errors of learning-augmented conditional CAPM in relation to CAPM in its original version. Our empirical results suggest that the learning about betas should be taken into account when estimating both conditional and unconditional CAPM.Modelos de valoración de activos representan una de las más discutidas e investigadas áreas en las finanzas. Son ampliamente utilizados de forma teórica y práctica en el área de investimentos para modelizar y predecir el riesgo y la rentabilidad de los títulos y de las carteras, así como en finanzas corporativas para estimar el coste de capital y clasificar proyectos de inversión. Proporcionan una medida útil de riesgo a los gestores y a los inversores para ayudarles a determinar el retorno adecuado para poner su dinero en riesgo. El objetivo de este trabajo es analizar el desempeño del modelo CAPM condicional con aprendizaje propuesto por Adrian e Franzoni (2009) cuando aplicado a los retornos de las acciones más negociadas en el mercado de valores de Brasil desde 1987 hasta 2010. Adrian y Franzoni, en su artículo, contribuyen a la literatura del CAPM condicional por proponer un nuevo tipo de variación temporal en los betas condicionales. En este entorno, los inversores se forman expectativas sobre el nivel de largo plazo de los pesos factoriales a partir de la observación de los rendimientos realizados de variables exógenas. Como consecuencia directa de este supuesto, los betas condicionales se pueden modelizar mediante el filtro de Kalman. Utilizando datos de 25 acciones ordenadas por el tamaño y por el índice de valor contable-valor de mercado, los autores concluyeron que el CAPM condicional con el aprendizaje es capaz de reducir sustancialmente los errores de precios en comparación con el CAPM en su versión original. De esta manera, contribuimos con la literatura de valoración de activos, al evaluar si este modelo es capaz de reducir los errores de precios en relación a la versión original del modelo CAPM, cuando aplicada a los datos del mercado brasileño a partir de los activos individuales. Los resultados de este estudio muestran una reducción de lo modelo CAPM condicional con aprendizaje en relación con el CAPM en su versión original. Por lo tanto, os resultados empíricos sugieren que el aprendizaje acerca de los betas debe ser tomado en cuenta en la estimación del CAPM condicional e incondicional.Modelos de precificação de ativos representam uma das áreas mais discutidas e pesquisadas ??em finanças. São amplamente utilizados de forma teórica e prática na área de investimentos para modelar e prever o risco e o retorno de títulos e de carteiras, bem como em finanças corporativas para estimar o custo de capital e ranquear projetos de investimento. Eles fornecem uma medida útil de risco que ajuda gerentes e investidores determinar o retorno requerido ao colocar seu dinheiro em risco. O objetivo deste trabalho é analisar o desempenho do modelo CAPM condicional com aprendizagem proposto por Adrian e Franzoni (2009) quando aplicado às séries de retornos das ações mais líquidas do mercado brasileiro no período 1987-2010. Adrian e Franzoni, em seu artigo, complementaram a literatura do CAPM condicional ao modelarem um novo tipo de variação temporal nos betas condicionais. Neste ambiente, os investidores formam expectativas sobre o nível de longo prazo dos fatores de risco com base nos retornos realizados de variáveis exógenas. Como consequência direta desta hipótese, os betas condicionais são modelados através do filtro de Kalman. Utilizando-se dados de 25 carteiras classificadas por tamanho e pelo índice valor contábil-valor de mercado, os autores concluíram que o CAPM condicional com aprendizagem é capaz de reduzir substancialmente os erros de apreçamento quando comparado ao CAPM em sua versão original. Desta forma contribuímos com a literatura de precificação de ativos, na medida em que avaliamos se este modelo é capaz de reduzir os erros de apreçamento em relação à versão original do modelo CAPM, quando aplicado à dados de ativos individuais brasileiros. Os resultados deste artigo evidenciam uma redução nos erros de precificação do CAPM condicional com aprendizagem em relação ao CAPM em sua versão original. Desta forma, tais resultados empíricos sugerem que a aprendizagem sobre os betas deve ser levada em consideração na estimação do CAPM incondicional e condicional.Editora Mackenzie2012-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/mswordapplication/mswordapplication/mswordhttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113Revista de Administração Mackenzie; Vol. 14 No. 1 (2013)Revista de Administração Mackenzie; Vol. 14 Núm. 1 (2013)Revista de Administração Mackenzie (Mackenzie Management Review); v. 14 n. 1 (2013)1678-69711518-6776reponame:RAM. Revista de Administração Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEporhttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/3960https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8500https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8501https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8502Copyright (c) 2015 Revista de Administração Mackenzieinfo:eu-repo/semantics/openAccessMazzeu, João Henrique GonçalvesSantos, André Alves PortelaCarneiro Affonso Costa Jr, Newton2015-06-25T00:07:39Zoai:ojs.editorarevistas.mackenzie.br:article/4113Revistahttps://editorarevistas.mackenzie.br/index.php/RAM/PUBhttps://editorarevistas.mackenzie.br/index.php/RAM/oairevista.adm@mackenzie.br1678-69711518-6776opendoar:2015-06-25T00:07:39RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)false |
dc.title.none.fl_str_mv |
Conditional CAPM with learning applied to the Brazilian stock market CAPM condicional con el aprendizaje aplicado a la bolsa de valores brasileña CAPM Condicional com Aprendizagem Aplicado ao Mercado de Ações Brasileiro |
title |
Conditional CAPM with learning applied to the Brazilian stock market |
spellingShingle |
Conditional CAPM with learning applied to the Brazilian stock market Mazzeu, João Henrique Gonçalves Conditional CAPM Kalman filter Forecasting Beta coefficient Pricing errors CAPM condicional Filtros de Kalman Previsión Coeficiente beta Errores de valoración CAPM condicional Filtro de Kalman Previsão Coeficiente beta Erros de apreçamento |
title_short |
Conditional CAPM with learning applied to the Brazilian stock market |
title_full |
Conditional CAPM with learning applied to the Brazilian stock market |
title_fullStr |
Conditional CAPM with learning applied to the Brazilian stock market |
title_full_unstemmed |
Conditional CAPM with learning applied to the Brazilian stock market |
title_sort |
Conditional CAPM with learning applied to the Brazilian stock market |
author |
Mazzeu, João Henrique Gonçalves |
author_facet |
Mazzeu, João Henrique Gonçalves Santos, André Alves Portela Carneiro Affonso Costa Jr, Newton |
author_role |
author |
author2 |
Santos, André Alves Portela Carneiro Affonso Costa Jr, Newton |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mazzeu, João Henrique Gonçalves Santos, André Alves Portela Carneiro Affonso Costa Jr, Newton |
dc.subject.por.fl_str_mv |
Conditional CAPM Kalman filter Forecasting Beta coefficient Pricing errors CAPM condicional Filtros de Kalman Previsión Coeficiente beta Errores de valoración CAPM condicional Filtro de Kalman Previsão Coeficiente beta Erros de apreçamento |
topic |
Conditional CAPM Kalman filter Forecasting Beta coefficient Pricing errors CAPM condicional Filtros de Kalman Previsión Coeficiente beta Errores de valoración CAPM condicional Filtro de Kalman Previsão Coeficiente beta Erros de apreçamento |
description |
Asset pricing models represent one of the most discussed and researched areas in finance. They are widely used in a theoretical and practical manner to model and predict risk and return to price securities and portfolios as well as in corporate finance to estimate the cost of capital and rank investment projects. They provide a usable measure of risk that helps managers and investors determine what return they deserve for putting their money at risk. The objective of this paper is to analyze the performance of the learning-augmented conditional CAPM model of Adrian e Franzoni (2009) when applied to the returns of the most liquid stocks transactioned in the Brazilian stock market from 1987 to 2010. Adrian & Franzoni, in their paper, complemented the conditional CAPM literature by modeling a new type of time-variation in conditional betas. In this environment, investors form expectations about the long run level of factor loadings from the observation of realized returns of exogenous variables. As a direct consequence of this assumption, conditional betas are modeled using the Kalman filter. Using data of 25 portfolios sorted by size and book-to-market ratio, the authors concluded that the learning-augmented conditional CAPM is able to substantially reduce the pricing errors when compared to the original version of CAPM. Thus, we contribute to the pricing asset literature, as we evaluate whether this model is able to reduce pricing errors in relation to its original version when applied to Brazilian individual asset data. The results of this article showed a decreasing in the pricing errors of learning-augmented conditional CAPM in relation to CAPM in its original version. Our empirical results suggest that the learning about betas should be taken into account when estimating both conditional and unconditional CAPM. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113 |
url |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/3960 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8500 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8501 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/4113/8502 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Revista de Administração Mackenzie info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Revista de Administração Mackenzie |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/msword application/msword application/msword |
dc.publisher.none.fl_str_mv |
Editora Mackenzie |
publisher.none.fl_str_mv |
Editora Mackenzie |
dc.source.none.fl_str_mv |
Revista de Administração Mackenzie; Vol. 14 No. 1 (2013) Revista de Administração Mackenzie; Vol. 14 Núm. 1 (2013) Revista de Administração Mackenzie (Mackenzie Management Review); v. 14 n. 1 (2013) 1678-6971 1518-6776 reponame:RAM. Revista de Administração Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
instacron_str |
MACKENZIE |
institution |
MACKENZIE |
reponame_str |
RAM. Revista de Administração Mackenzie |
collection |
RAM. Revista de Administração Mackenzie |
repository.name.fl_str_mv |
RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
repository.mail.fl_str_mv |
revista.adm@mackenzie.br |
_version_ |
1813820670904107008 |