DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO

Detalhes bibliográficos
Autor(a) principal: Francisco, Eduardo
Data de Publicação: 2010
Outros Autores: Fagundes, Eduardo Bortotti, Ponchio, Mateus Canniatti, Zambaldi, Felipe
Tipo de documento: Artigo
Idioma: eng
por
Título da fonte: RAM. Revista de Administração Mackenzie
Texto Completo: https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597
Resumo: Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed.
id MACKENZIE_c679bd8e7664be21acfcbb313d8cc5ad
oai_identifier_str oai:ojs.editorarevistas.mackenzie.br:article/1597
network_acronym_str MACKENZIE
network_name_str RAM. Revista de Administração Mackenzie
repository_id_str
spelling DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULODevelopment of an indicator of propensity to energy commercial losses using GEOSPATIAL statistical techniques and socio-economic data: the case of AES ELETROPAULOOperations managementEnergy distributionLoss managementGeographically weighted regressionSocial vulnerability.Gestão de operaçõesDistribuição de energiaGestão de perdasGeographically weighted regressionVulnerabilidade social.Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed. Dada a crescente importância da integração de indicadores de marketing e operações para melhorar o desempenho empresarial, e a disponibilidade de sofisticadas técnicas de Estatística Espacial, este trabalho desenvolve um indicador de propensão a perdas comerciais de energia. Gestão de perdas é um tema estratégico para as empresas de distribuição de energia, em particular para a AES Eletropaulo. Nesse contexto, os objetivos deste trabalho são: (i) apropriar modelos espaciais auto-regressivos e a geographically weighted regression (GWR – regressão ponderada geograficamente) para medir a influência cultural da vizinhança no comportamento do cliente no ato da fraude de energia; (ii) substituir as áreas de cobertura de favela por um índice regional de vulnerabilidade social; e (iii) associar a perda de energia com indicadores de satisfação de clientes, em uma abordagem espaço-temporal. Técnicas de regressão espacial são revisadas, seguidas por uma discussão sobre a vulnerabilidade social e os indicadores de satisfação do cliente. Os dados operacionais obtidos a partir de sistemas de informação geográfica da AES Eletropaulo foram combinados com dados secundários a fim de gerar modelos preditivos de regressão, com a perda de energia como variável resposta. Os resultados mostram que a incorporação de dados sociais e de mercado sobre os clientes contribuem substancialmente para explicar a perda de energia - o coeficiente de determinação dos modelos de regressão aumentou de 17,76% para 63,29%, quando comparados o modelo mais simples e o mais complexo. São apresentadas sugestões para trabalhos futuros e discutidas oportunidades para a replicação da metodologia em contextos comparáveis. Editora Mackenzie2010-05-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por ParesEmpirical Research; Econometricsapplication/pdfimage/pjpegimage/pjpegimage/pjpegimage/pjpegimage/pjpegimage/pjpeghttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597Revista de Administração Mackenzie; Vol. 11 No. 4 (2010)Revista de Administração Mackenzie; Vol. 11 Núm. 4 (2010)Revista de Administração Mackenzie (Mackenzie Management Review); v. 11 n. 4 (2010)1678-69711518-6776reponame:RAM. Revista de Administração Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEengporhttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/2414https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8015https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8016https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8017https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8018https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8019https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8020Copyright (c) 2015 Revista de Administração Mackenzieinfo:eu-repo/semantics/openAccessFrancisco, EduardoFagundes, Eduardo BortottiPonchio, Mateus CanniattiZambaldi, Felipe2011-01-18T18:08:35Zoai:ojs.editorarevistas.mackenzie.br:article/1597Revistahttps://editorarevistas.mackenzie.br/index.php/RAM/PUBhttps://editorarevistas.mackenzie.br/index.php/RAM/oairevista.adm@mackenzie.br1678-69711518-6776opendoar:2011-01-18T18:08:35RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)false
dc.title.none.fl_str_mv DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
Development of an indicator of propensity to energy commercial losses using GEOSPATIAL statistical techniques and socio-economic data: the case of AES ELETROPAULO
title DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
spellingShingle DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
Francisco, Eduardo
Operations management
Energy distribution
Loss management
Geographically weighted regression
Social vulnerability.
Gestão de operações
Distribuição de energia
Gestão de perdas
Geographically weighted regression
Vulnerabilidade social.
title_short DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
title_full DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
title_fullStr DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
title_full_unstemmed DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
title_sort DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
author Francisco, Eduardo
author_facet Francisco, Eduardo
Fagundes, Eduardo Bortotti
Ponchio, Mateus Canniatti
Zambaldi, Felipe
author_role author
author2 Fagundes, Eduardo Bortotti
Ponchio, Mateus Canniatti
Zambaldi, Felipe
author2_role author
author
author
dc.contributor.author.fl_str_mv Francisco, Eduardo
Fagundes, Eduardo Bortotti
Ponchio, Mateus Canniatti
Zambaldi, Felipe
dc.subject.por.fl_str_mv Operations management
Energy distribution
Loss management
Geographically weighted regression
Social vulnerability.
Gestão de operações
Distribuição de energia
Gestão de perdas
Geographically weighted regression
Vulnerabilidade social.
topic Operations management
Energy distribution
Loss management
Geographically weighted regression
Social vulnerability.
Gestão de operações
Distribuição de energia
Gestão de perdas
Geographically weighted regression
Vulnerabilidade social.
description Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed.
publishDate 2010
dc.date.none.fl_str_mv 2010-05-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado por Pares
Empirical Research; Econometrics
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597
url https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597
dc.language.iso.fl_str_mv eng
por
language eng
por
dc.relation.none.fl_str_mv https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/2414
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8015
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8016
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8017
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8018
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8019
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8020
dc.rights.driver.fl_str_mv Copyright (c) 2015 Revista de Administração Mackenzie
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 Revista de Administração Mackenzie
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/pjpeg
image/pjpeg
image/pjpeg
image/pjpeg
image/pjpeg
image/pjpeg
dc.publisher.none.fl_str_mv Editora Mackenzie
publisher.none.fl_str_mv Editora Mackenzie
dc.source.none.fl_str_mv Revista de Administração Mackenzie; Vol. 11 No. 4 (2010)
Revista de Administração Mackenzie; Vol. 11 Núm. 4 (2010)
Revista de Administração Mackenzie (Mackenzie Management Review); v. 11 n. 4 (2010)
1678-6971
1518-6776
reponame:RAM. Revista de Administração Mackenzie
instname:Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron:MACKENZIE
instname_str Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron_str MACKENZIE
institution MACKENZIE
reponame_str RAM. Revista de Administração Mackenzie
collection RAM. Revista de Administração Mackenzie
repository.name.fl_str_mv RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)
repository.mail.fl_str_mv revista.adm@mackenzie.br
_version_ 1813820669647912960