DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | RAM. Revista de Administração Mackenzie |
Texto Completo: | https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597 |
Resumo: | Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed. |
id |
MACKENZIE_c679bd8e7664be21acfcbb313d8cc5ad |
---|---|
oai_identifier_str |
oai:ojs.editorarevistas.mackenzie.br:article/1597 |
network_acronym_str |
MACKENZIE |
network_name_str |
RAM. Revista de Administração Mackenzie |
repository_id_str |
|
spelling |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULODevelopment of an indicator of propensity to energy commercial losses using GEOSPATIAL statistical techniques and socio-economic data: the case of AES ELETROPAULOOperations managementEnergy distributionLoss managementGeographically weighted regressionSocial vulnerability.Gestão de operaçõesDistribuição de energiaGestão de perdasGeographically weighted regressionVulnerabilidade social.Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed. Dada a crescente importância da integração de indicadores de marketing e operações para melhorar o desempenho empresarial, e a disponibilidade de sofisticadas técnicas de Estatística Espacial, este trabalho desenvolve um indicador de propensão a perdas comerciais de energia. Gestão de perdas é um tema estratégico para as empresas de distribuição de energia, em particular para a AES Eletropaulo. Nesse contexto, os objetivos deste trabalho são: (i) apropriar modelos espaciais auto-regressivos e a geographically weighted regression (GWR – regressão ponderada geograficamente) para medir a influência cultural da vizinhança no comportamento do cliente no ato da fraude de energia; (ii) substituir as áreas de cobertura de favela por um índice regional de vulnerabilidade social; e (iii) associar a perda de energia com indicadores de satisfação de clientes, em uma abordagem espaço-temporal. Técnicas de regressão espacial são revisadas, seguidas por uma discussão sobre a vulnerabilidade social e os indicadores de satisfação do cliente. Os dados operacionais obtidos a partir de sistemas de informação geográfica da AES Eletropaulo foram combinados com dados secundários a fim de gerar modelos preditivos de regressão, com a perda de energia como variável resposta. Os resultados mostram que a incorporação de dados sociais e de mercado sobre os clientes contribuem substancialmente para explicar a perda de energia - o coeficiente de determinação dos modelos de regressão aumentou de 17,76% para 63,29%, quando comparados o modelo mais simples e o mais complexo. São apresentadas sugestões para trabalhos futuros e discutidas oportunidades para a replicação da metodologia em contextos comparáveis. Editora Mackenzie2010-05-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por ParesEmpirical Research; Econometricsapplication/pdfimage/pjpegimage/pjpegimage/pjpegimage/pjpegimage/pjpegimage/pjpeghttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597Revista de Administração Mackenzie; Vol. 11 No. 4 (2010)Revista de Administração Mackenzie; Vol. 11 Núm. 4 (2010)Revista de Administração Mackenzie (Mackenzie Management Review); v. 11 n. 4 (2010)1678-69711518-6776reponame:RAM. Revista de Administração Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEengporhttps://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/2414https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8015https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8016https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8017https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8018https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8019https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8020Copyright (c) 2015 Revista de Administração Mackenzieinfo:eu-repo/semantics/openAccessFrancisco, EduardoFagundes, Eduardo BortottiPonchio, Mateus CanniattiZambaldi, Felipe2011-01-18T18:08:35Zoai:ojs.editorarevistas.mackenzie.br:article/1597Revistahttps://editorarevistas.mackenzie.br/index.php/RAM/PUBhttps://editorarevistas.mackenzie.br/index.php/RAM/oairevista.adm@mackenzie.br1678-69711518-6776opendoar:2011-01-18T18:08:35RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)false |
dc.title.none.fl_str_mv |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO Development of an indicator of propensity to energy commercial losses using GEOSPATIAL statistical techniques and socio-economic data: the case of AES ELETROPAULO |
title |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
spellingShingle |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO Francisco, Eduardo Operations management Energy distribution Loss management Geographically weighted regression Social vulnerability. Gestão de operações Distribuição de energia Gestão de perdas Geographically weighted regression Vulnerabilidade social. |
title_short |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
title_full |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
title_fullStr |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
title_full_unstemmed |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
title_sort |
DEVELOPMENT OF AN INDICATOR OF PROPENSITY TO ENERGY COMMERCIAL LOSSES USING GEOSPATIAL STATISTICAL TECHNIQUES AND SOCIO-ECONOMIC DATA: THE CASE OF AES ELETROPAULO |
author |
Francisco, Eduardo |
author_facet |
Francisco, Eduardo Fagundes, Eduardo Bortotti Ponchio, Mateus Canniatti Zambaldi, Felipe |
author_role |
author |
author2 |
Fagundes, Eduardo Bortotti Ponchio, Mateus Canniatti Zambaldi, Felipe |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Francisco, Eduardo Fagundes, Eduardo Bortotti Ponchio, Mateus Canniatti Zambaldi, Felipe |
dc.subject.por.fl_str_mv |
Operations management Energy distribution Loss management Geographically weighted regression Social vulnerability. Gestão de operações Distribuição de energia Gestão de perdas Geographically weighted regression Vulnerabilidade social. |
topic |
Operations management Energy distribution Loss management Geographically weighted regression Social vulnerability. Gestão de operações Distribuição de energia Gestão de perdas Geographically weighted regression Vulnerabilidade social. |
description |
Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work’s objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo’s geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss – the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado por Pares Empirical Research; Econometrics |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597 |
url |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/2414 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8015 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8016 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8017 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8018 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8019 https://editorarevistas.mackenzie.br/index.php/RAM/article/view/1597/8020 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Revista de Administração Mackenzie info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Revista de Administração Mackenzie |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf image/pjpeg image/pjpeg image/pjpeg image/pjpeg image/pjpeg image/pjpeg |
dc.publisher.none.fl_str_mv |
Editora Mackenzie |
publisher.none.fl_str_mv |
Editora Mackenzie |
dc.source.none.fl_str_mv |
Revista de Administração Mackenzie; Vol. 11 No. 4 (2010) Revista de Administração Mackenzie; Vol. 11 Núm. 4 (2010) Revista de Administração Mackenzie (Mackenzie Management Review); v. 11 n. 4 (2010) 1678-6971 1518-6776 reponame:RAM. Revista de Administração Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
instacron_str |
MACKENZIE |
institution |
MACKENZIE |
reponame_str |
RAM. Revista de Administração Mackenzie |
collection |
RAM. Revista de Administração Mackenzie |
repository.name.fl_str_mv |
RAM. Revista de Administração Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
repository.mail.fl_str_mv |
revista.adm@mackenzie.br |
_version_ |
1813820669647912960 |