A new android malware detection method based on multimodal deep learning and hybrid analysis

Detalhes bibliográficos
Autor(a) principal: Oliveira, Angelo Schranko de
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/3096
Resumo: In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate.
id NOVE_0dec6718556300f530c774bab32d009c
oai_identifier_str oai:localhost:tede/3096
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Lopes, Fábio Silvahttp://lattes.cnpq.br/2302666201616083Silva, Leandro Augusto dahttp://lattes.cnpq.br/1396385111251741Dias, Cleber Gustavohttp://lattes.cnpq.br/2147386441758156Martins, Fellipe Silvahttp://lattes.cnpq.br/7912881403948084http://lattes.cnpq.br/3426939060925235Oliveira, Angelo Schranko de2022-12-02T12:52:43Z2022-03-17Oliveira, Angelo Schranko de. A new android malware detection method based on multimodal deep learning and hybrid analysis. 2022.95 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3096In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate.In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-12-02T12:52:43Z No. of bitstreams: 1 Angelo Schranko de Oliveira.pdf: 4736885 bytes, checksum: d3c263db3ea018f7123104adcc332964 (MD5)Made available in DSpace on 2022-12-02T12:52:43Z (GMT). No. of bitstreams: 1 Angelo Schranko de Oliveira.pdf: 4736885 bytes, checksum: d3c263db3ea018f7123104adcc332964 (MD5) Previous issue date: 2022-03-17application/pdfengUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticaandroid malware detectionmultimodal deep learningcomputer securityandroid malware detectionmultimodal deep learningcomputer securityCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOA new android malware detection method based on multimodal deep learning and hybrid analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALAngelo Schranko de Oliveira.pdfAngelo Schranko de Oliveira.pdfapplication/pdf4736885http://localhost:8080/tede/bitstream/tede/3096/2/Angelo+Schranko+de+Oliveira.pdfd3c263db3ea018f7123104adcc332964MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3096/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30962022-12-02 09:52:43.776oai:localhost:tede/3096Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2022-12-02T12:52:43Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv A new android malware detection method based on multimodal deep learning and hybrid analysis
title A new android malware detection method based on multimodal deep learning and hybrid analysis
spellingShingle A new android malware detection method based on multimodal deep learning and hybrid analysis
Oliveira, Angelo Schranko de
android malware detection
multimodal deep learning
computer security
android malware detection
multimodal deep learning
computer security
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short A new android malware detection method based on multimodal deep learning and hybrid analysis
title_full A new android malware detection method based on multimodal deep learning and hybrid analysis
title_fullStr A new android malware detection method based on multimodal deep learning and hybrid analysis
title_full_unstemmed A new android malware detection method based on multimodal deep learning and hybrid analysis
title_sort A new android malware detection method based on multimodal deep learning and hybrid analysis
author Oliveira, Angelo Schranko de
author_facet Oliveira, Angelo Schranko de
author_role author
dc.contributor.advisor1.fl_str_mv Sassi, Renato José
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee1.fl_str_mv Sassi, Renato José
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee2.fl_str_mv Lopes, Fábio Silva
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2302666201616083
dc.contributor.referee3.fl_str_mv Silva, Leandro Augusto da
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/1396385111251741
dc.contributor.referee4.fl_str_mv Dias, Cleber Gustavo
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2147386441758156
dc.contributor.referee5.fl_str_mv Martins, Fellipe Silva
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/7912881403948084
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3426939060925235
dc.contributor.author.fl_str_mv Oliveira, Angelo Schranko de
contributor_str_mv Sassi, Renato José
Sassi, Renato José
Lopes, Fábio Silva
Silva, Leandro Augusto da
Dias, Cleber Gustavo
Martins, Fellipe Silva
dc.subject.por.fl_str_mv android malware detection
multimodal deep learning
computer security
topic android malware detection
multimodal deep learning
computer security
android malware detection
multimodal deep learning
computer security
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv android malware detection
multimodal deep learning
computer security
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-02T12:52:43Z
dc.date.issued.fl_str_mv 2022-03-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Oliveira, Angelo Schranko de. A new android malware detection method based on multimodal deep learning and hybrid analysis. 2022.95 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3096
identifier_str_mv Oliveira, Angelo Schranko de. A new android malware detection method based on multimodal deep learning and hybrid analysis. 2022.95 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3096
dc.language.iso.fl_str_mv eng
language eng
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3096/2/Angelo+Schranko+de+Oliveira.pdf
http://localhost:8080/tede/bitstream/tede/3096/1/license.txt
bitstream.checksum.fl_str_mv d3c263db3ea018f7123104adcc332964
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016889052168192