Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias

Detalhes bibliográficos
Autor(a) principal: Silva, Rosana Cordovil da
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/3088
Resumo: An intrusion event is an abnormal activity that can lead to security incidents, which in turn impairs the proper functioning of a computer network. Among the steps that can be taken to ensure data security, honeypots are information security tools used to lure attacks into a controlled and monitored environment to understand malicious behavior. Honeypots analyze data flow from the computer network. The amount and complexity of attacks have favored the use of Artificial Intelligence techniques, such as Rough Sets (RS) theory. Thus, this work aimed to apply the Rough Sets theory to reduce attributes and classify data flows in honeypots for anomaly detection. To achieve this objective, the bibliographical, descriptive and experimental research with quantitative approach was adopted as methodology. The selected database was honeypots, available from the Center for Studies, Response and Treatment of Security Incidents in Brazil (CERT.br) containing 2,057 records and 7. The experimental methodology was divided into six phases, ranging from the selection and extraction of information from the database to the application of a questionnaire for information technology professionals, in order to validate the results of the experiments. The application of RS in the honeypots database for attribute reduction generated a 4 attribute stronghold. Then RS were applied in the reduced base generating 2,044 decision rules, consolidated in 42 rules, due to their excessive number. A questionnaire with 5 questions was sent to 63 IT professionals, of which 50 answered. The percentage of Yes answers for all questions exceeded 90%, validating the application of SR. It was concluded, then, that with the experimental results obtained and the answers given to the questions of the questionnaire, that RS can be applied in information security area, more precisely to reduce attributes and classify data flows in honeypots for detection of data anomalies.
id NOVE_5235a4b75bf97c0fc148a0b8d8b994bb
oai_identifier_str oai:localhost:tede/3088
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Chalco, Jesús Pascual Menahttp://lattes.cnpq.br/4727357182510680Napolitano, Domingos Marcio Rodrigueshttp://lattes.cnpq.br/0433818215929535Belan, Peterson Adrianohttp://lattes.cnpq.br/8197537484347198http://lattes.cnpq.br/6948893170219470Silva, Rosana Cordovil da2022-11-17T19:25:26Z2019-12-16Silva, Rosana Cordovil da. Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias. 2019. 89 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3088An intrusion event is an abnormal activity that can lead to security incidents, which in turn impairs the proper functioning of a computer network. Among the steps that can be taken to ensure data security, honeypots are information security tools used to lure attacks into a controlled and monitored environment to understand malicious behavior. Honeypots analyze data flow from the computer network. The amount and complexity of attacks have favored the use of Artificial Intelligence techniques, such as Rough Sets (RS) theory. Thus, this work aimed to apply the Rough Sets theory to reduce attributes and classify data flows in honeypots for anomaly detection. To achieve this objective, the bibliographical, descriptive and experimental research with quantitative approach was adopted as methodology. The selected database was honeypots, available from the Center for Studies, Response and Treatment of Security Incidents in Brazil (CERT.br) containing 2,057 records and 7. The experimental methodology was divided into six phases, ranging from the selection and extraction of information from the database to the application of a questionnaire for information technology professionals, in order to validate the results of the experiments. The application of RS in the honeypots database for attribute reduction generated a 4 attribute stronghold. Then RS were applied in the reduced base generating 2,044 decision rules, consolidated in 42 rules, due to their excessive number. A questionnaire with 5 questions was sent to 63 IT professionals, of which 50 answered. The percentage of Yes answers for all questions exceeded 90%, validating the application of SR. It was concluded, then, that with the experimental results obtained and the answers given to the questions of the questionnaire, that RS can be applied in information security area, more precisely to reduce attributes and classify data flows in honeypots for detection of data anomalies.Um evento de intrusão consiste em uma atividade anormal capaz de originar incidentes de segurança, que, por sua vez, prejudicam o funcionamento correto de uma rede de computadores. Dentre as providências que podem ser tomadas para garantir a segurança dos dados, destacam-se os Honeypots, que são ferramentas de segurança da informação utilizadas para atrair ataques para um ambiente controlado e monitorado, a fim de entender o comportamento malicioso. Os Honeypots analisam o fluxo de dados da rede de computadores. A quantidade e a complexidade dos ataques têm favorecido o uso de técnicas da Inteligência Artificial, como a teoria dos Rough Sets (RS). Assim, este trabalho teve como objetivo aplicar a teoria dos Rough Sets para reduzir atributos e classificar fluxos de dados em Honeypots para detecção de anomalias. Para alcançar tal objetivo, foi adotada, como metodologia, a pesquisa bibliográfica, descritivo e experimental, com abordagem quantitativa. A base de dados selecionada foi a de Honeypots, disponibilizada pelo Centro de Estudos, Resposta e Tratamento de Incidentes de Segurança no Brasil (CERT.br) contendo 2.057 registros e 7 atributos. A metodologia experimental foi dividida em seis fases, considerando desde a seleção e extração das informações da base de dados até a aplicação de um questionário para profissionais da área de Segurança da informação, a fim de validar os resultados dos experimentos. A aplicação dos RS na base de dados de Honeypots, para redução de atributos gerou um reduto com 4 atributos. Em seguida, RS foram aplicados na base reduzida gerando 2.044 regras de decisão, consolidadas em 42 regras, devido ao seu número excessivo. Um questionário com 5 perguntas foi enviado para 63 profissionais da área de TI, destes 50 responderam. O percentual de respostas Sim para todas as perguntas superou os 90%, validando a aplicação dos RS. Concluiu-se, então, que com os resultados experimentais obtidos e as respostas dadas às perguntas do questionário, que RS pode ser aplicado em problemas da área de segurança da informação, mais precisamente para reduzir atributos e classificar fluxos de dados em Honeypots para detecção de anomalias.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-11-17T19:25:26Z No. of bitstreams: 1 Rosana Cordovil da Silva.pdf: 1443052 bytes, checksum: add134dd5f19866c356018e8ae119b62 (MD5)Made available in DSpace on 2022-11-17T19:25:26Z (GMT). No. of bitstreams: 1 Rosana Cordovil da Silva.pdf: 1443052 bytes, checksum: add134dd5f19866c356018e8ae119b62 (MD5) Previous issue date: 2019-12-16application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticahoneypotsteoria dos Rough Setssegurança da informaçãodetecção de intrusãodetecção de anomaliashoneypotsRough Set theoryinformation securityintrusion detectionanomaly detection.CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOTeoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomaliasRough Sets theory on attribute reduction and classification of data flows in honeypots for anomaly detectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALRosana Cordovil da Silva.pdfRosana Cordovil da Silva.pdfapplication/pdf1443052http://localhost:8080/tede/bitstream/tede/3088/2/Rosana+Cordovil+da+Silva.pdfadd134dd5f19866c356018e8ae119b62MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3088/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30882022-11-17 16:25:26.337oai:localhost:tede/3088Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2022-11-17T19:25:26Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
dc.title.alternative.eng.fl_str_mv Rough Sets theory on attribute reduction and classification of data flows in honeypots for anomaly detection
title Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
spellingShingle Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
Silva, Rosana Cordovil da
honeypots
teoria dos Rough Sets
segurança da informação
detecção de intrusão
detecção de anomalias
honeypots
Rough Set theory
information security
intrusion detection
anomaly detection.
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
title_full Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
title_fullStr Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
title_full_unstemmed Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
title_sort Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias
author Silva, Rosana Cordovil da
author_facet Silva, Rosana Cordovil da
author_role author
dc.contributor.advisor1.fl_str_mv Sassi, Renato José
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee1.fl_str_mv Sassi, Renato José
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee2.fl_str_mv Chalco, Jesús Pascual Mena
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/4727357182510680
dc.contributor.referee3.fl_str_mv Napolitano, Domingos Marcio Rodrigues
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/0433818215929535
dc.contributor.referee4.fl_str_mv Belan, Peterson Adriano
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8197537484347198
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6948893170219470
dc.contributor.author.fl_str_mv Silva, Rosana Cordovil da
contributor_str_mv Sassi, Renato José
Sassi, Renato José
Chalco, Jesús Pascual Mena
Napolitano, Domingos Marcio Rodrigues
Belan, Peterson Adriano
dc.subject.por.fl_str_mv honeypots
teoria dos Rough Sets
segurança da informação
detecção de intrusão
detecção de anomalias
topic honeypots
teoria dos Rough Sets
segurança da informação
detecção de intrusão
detecção de anomalias
honeypots
Rough Set theory
information security
intrusion detection
anomaly detection.
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv honeypots
Rough Set theory
information security
intrusion detection
anomaly detection.
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description An intrusion event is an abnormal activity that can lead to security incidents, which in turn impairs the proper functioning of a computer network. Among the steps that can be taken to ensure data security, honeypots are information security tools used to lure attacks into a controlled and monitored environment to understand malicious behavior. Honeypots analyze data flow from the computer network. The amount and complexity of attacks have favored the use of Artificial Intelligence techniques, such as Rough Sets (RS) theory. Thus, this work aimed to apply the Rough Sets theory to reduce attributes and classify data flows in honeypots for anomaly detection. To achieve this objective, the bibliographical, descriptive and experimental research with quantitative approach was adopted as methodology. The selected database was honeypots, available from the Center for Studies, Response and Treatment of Security Incidents in Brazil (CERT.br) containing 2,057 records and 7. The experimental methodology was divided into six phases, ranging from the selection and extraction of information from the database to the application of a questionnaire for information technology professionals, in order to validate the results of the experiments. The application of RS in the honeypots database for attribute reduction generated a 4 attribute stronghold. Then RS were applied in the reduced base generating 2,044 decision rules, consolidated in 42 rules, due to their excessive number. A questionnaire with 5 questions was sent to 63 IT professionals, of which 50 answered. The percentage of Yes answers for all questions exceeded 90%, validating the application of SR. It was concluded, then, that with the experimental results obtained and the answers given to the questions of the questionnaire, that RS can be applied in information security area, more precisely to reduce attributes and classify data flows in honeypots for detection of data anomalies.
publishDate 2019
dc.date.issued.fl_str_mv 2019-12-16
dc.date.accessioned.fl_str_mv 2022-11-17T19:25:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Silva, Rosana Cordovil da. Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias. 2019. 89 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3088
identifier_str_mv Silva, Rosana Cordovil da. Teoria dos Rough Sets na redução de atributos e classificação de fluxos de dados em honeypots para detecção de anomalias. 2019. 89 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3088
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3088/2/Rosana+Cordovil+da+Silva.pdf
http://localhost:8080/tede/bitstream/tede/3088/1/license.txt
bitstream.checksum.fl_str_mv add134dd5f19866c356018e8ae119b62
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016889087819776