Sistema de visão computacional para inspeção da qualidade de grãos de feijão

Detalhes bibliográficos
Autor(a) principal: Belan, Peterson Adriano
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/2793
Resumo: The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection.
id NOVE_97d3604a3fe53ec2572410ccb2117f74
oai_identifier_str oai:localhost:tede/2793
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Alves, Wonder Alexandre Luzhttp://lattes.cnpq.br/3138898469532698Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Kim, Hae Yonghttp://lattes.cnpq.br/7240386704593891Santana, José Carlos Curvelohttp://lattes.cnpq.br/0408226658529368Librantz, Andre Felipe Henriqueshttp://lattes.cnpq.br/3569470521730110Dias, Cleber Gustavohttp://lattes.cnpq.br/2147386441758156http://lattes.cnpq.br/8197537484347198Belan, Peterson Adriano2021-12-02T15:20:09Z2019-02-07Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2793The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection.As propriedades visuais de muitos produtos agrícolas, incluindo grãos de feijão, são fatores importantes para determinar seus preços de mercado e auxiliar na escolha do consumidor. Basicamente, a inspeção visual da qualidade do feijão brasileiro é feita de forma manual seguindo procedimentos operacionais estabelecidos pelo Ministério da Agricultura, Pecuária e Abastecimento, que instruem como enquadrar o feijão em grupo (de acordo com a espécie botânica), classe (com base na coloração das peles dos grãos) e tipo (conforme os defeitos existentes na amostra). Os processos manuais de inspeção de qualidade normalmente estão sujeitos a problemas como o alto custo e a dificuldade de padronização dos resultados. Neste contexto, torna-se importante o uso de sistemas computacionais com intuito de reduzir custos operacionais e padronizar resultados, gerando diferencial competitivo para as empresas. Neste trabalho foi desenvolvido de um sistema de visão computacional para inspeção da qualidade de grãos de feijão (determinação de classe e tipo), denominado SIVQUAF, composto por um conjunto de software e hardware. Para concepção do software foram desenvolvidas abordagens computacionais para segmentação, classificação e detecção dos principais defeitos. Já o hardware consiste em um equipamento desenvolvido com materiais eletromecânicos de baixo custo, tais como uma mesa confeccionada em alumínio estrutural que inclui uma câmera de aquisição de imagens, servo motor e mecanismo separador de grãos. Foram realizados experimentos com o SIVQUAF em dois modos: amostra individualizada e contínuo. Para o primeiro modo empregou-se uma base composta por 270 imagens de amostras de feijões, com diferentes misturas e defeitos, adquiridas com o uso do equipamento desenvolvido. Já no modo contínuo (ou on-line) os feijões contidos em um lote, por exemplo um saco de 1Kg, são derramados continuamente na esteira para o sistema realizar a inspeção, similar ao que ocorre na indústria de alimentos. Tais experimentos demonstraram a viabilidade do SIVQUAF para operar em modo contínuo, uma vez que ele é capaz processar uma imagem de 1280×720 pixels em aproximadamente 1,0 s, com taxas de acertos de 98,0% na segmentação, 99,0% na classificação e acima de 80,0% na detecção de defeitos.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-12-02T15:20:09Z No. of bitstreams: 1 Peterson Belan.pdf: 6829370 bytes, checksum: 77283b1d25a53b103cc922f0b42fc88f (MD5)Made available in DSpace on 2021-12-02T15:20:09Z (GMT). No. of bitstreams: 1 Peterson Belan.pdf: 6829370 bytes, checksum: 77283b1d25a53b103cc922f0b42fc88f (MD5) Previous issue date: 2019-02-07application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticaInspeção visualvisão computacionalinspeção da qualidadefeijãovisual inspectioncomputer visionquality inspectionbeansCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOSistema de visão computacional para inspeção da qualidade de grãos de feijãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALPeterson Belan.pdfPeterson Belan.pdfapplication/pdf6829370http://localhost:8080/tede/bitstream/tede/2793/2/Peterson+Belan.pdf77283b1d25a53b103cc922f0b42fc88fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2793/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/27932021-12-02 13:20:09.338oai:localhost:tede/2793Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-12-02T15:20:09Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Sistema de visão computacional para inspeção da qualidade de grãos de feijão
title Sistema de visão computacional para inspeção da qualidade de grãos de feijão
spellingShingle Sistema de visão computacional para inspeção da qualidade de grãos de feijão
Belan, Peterson Adriano
Inspeção visual
visão computacional
inspeção da qualidade
feijão
visual inspection
computer vision
quality inspection
beans
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Sistema de visão computacional para inspeção da qualidade de grãos de feijão
title_full Sistema de visão computacional para inspeção da qualidade de grãos de feijão
title_fullStr Sistema de visão computacional para inspeção da qualidade de grãos de feijão
title_full_unstemmed Sistema de visão computacional para inspeção da qualidade de grãos de feijão
title_sort Sistema de visão computacional para inspeção da qualidade de grãos de feijão
author Belan, Peterson Adriano
author_facet Belan, Peterson Adriano
author_role author
dc.contributor.advisor1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.advisor-co1.fl_str_mv Alves, Wonder Alexandre Luz
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3138898469532698
dc.contributor.referee1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee2.fl_str_mv Kim, Hae Yong
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7240386704593891
dc.contributor.referee3.fl_str_mv Santana, José Carlos Curvelo
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/0408226658529368
dc.contributor.referee4.fl_str_mv Librantz, Andre Felipe Henriques
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3569470521730110
dc.contributor.referee5.fl_str_mv Dias, Cleber Gustavo
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/2147386441758156
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8197537484347198
dc.contributor.author.fl_str_mv Belan, Peterson Adriano
contributor_str_mv Araújo, Sidnei Alves de
Alves, Wonder Alexandre Luz
Araújo, Sidnei Alves de
Kim, Hae Yong
Santana, José Carlos Curvelo
Librantz, Andre Felipe Henriques
Dias, Cleber Gustavo
dc.subject.por.fl_str_mv Inspeção visual
visão computacional
inspeção da qualidade
feijão
topic Inspeção visual
visão computacional
inspeção da qualidade
feijão
visual inspection
computer vision
quality inspection
beans
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv visual inspection
computer vision
quality inspection
beans
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-07
dc.date.accessioned.fl_str_mv 2021-12-02T15:20:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/2793
identifier_str_mv Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/2793
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/2793/2/Peterson+Belan.pdf
http://localhost:8080/tede/bitstream/tede/2793/1/license.txt
bitstream.checksum.fl_str_mv 77283b1d25a53b103cc922f0b42fc88f
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016885540487168