Sistema de visão computacional para inspeção da qualidade de grãos de feijão
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da Uninove |
Texto Completo: | http://bibliotecatede.uninove.br/handle/tede/2793 |
Resumo: | The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection. |
id |
NOVE_97d3604a3fe53ec2572410ccb2117f74 |
---|---|
oai_identifier_str |
oai:localhost:tede/2793 |
network_acronym_str |
NOVE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
repository_id_str |
|
spelling |
Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Alves, Wonder Alexandre Luzhttp://lattes.cnpq.br/3138898469532698Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Kim, Hae Yonghttp://lattes.cnpq.br/7240386704593891Santana, José Carlos Curvelohttp://lattes.cnpq.br/0408226658529368Librantz, Andre Felipe Henriqueshttp://lattes.cnpq.br/3569470521730110Dias, Cleber Gustavohttp://lattes.cnpq.br/2147386441758156http://lattes.cnpq.br/8197537484347198Belan, Peterson Adriano2021-12-02T15:20:09Z2019-02-07Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2793The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection.As propriedades visuais de muitos produtos agrícolas, incluindo grãos de feijão, são fatores importantes para determinar seus preços de mercado e auxiliar na escolha do consumidor. Basicamente, a inspeção visual da qualidade do feijão brasileiro é feita de forma manual seguindo procedimentos operacionais estabelecidos pelo Ministério da Agricultura, Pecuária e Abastecimento, que instruem como enquadrar o feijão em grupo (de acordo com a espécie botânica), classe (com base na coloração das peles dos grãos) e tipo (conforme os defeitos existentes na amostra). Os processos manuais de inspeção de qualidade normalmente estão sujeitos a problemas como o alto custo e a dificuldade de padronização dos resultados. Neste contexto, torna-se importante o uso de sistemas computacionais com intuito de reduzir custos operacionais e padronizar resultados, gerando diferencial competitivo para as empresas. Neste trabalho foi desenvolvido de um sistema de visão computacional para inspeção da qualidade de grãos de feijão (determinação de classe e tipo), denominado SIVQUAF, composto por um conjunto de software e hardware. Para concepção do software foram desenvolvidas abordagens computacionais para segmentação, classificação e detecção dos principais defeitos. Já o hardware consiste em um equipamento desenvolvido com materiais eletromecânicos de baixo custo, tais como uma mesa confeccionada em alumínio estrutural que inclui uma câmera de aquisição de imagens, servo motor e mecanismo separador de grãos. Foram realizados experimentos com o SIVQUAF em dois modos: amostra individualizada e contínuo. Para o primeiro modo empregou-se uma base composta por 270 imagens de amostras de feijões, com diferentes misturas e defeitos, adquiridas com o uso do equipamento desenvolvido. Já no modo contínuo (ou on-line) os feijões contidos em um lote, por exemplo um saco de 1Kg, são derramados continuamente na esteira para o sistema realizar a inspeção, similar ao que ocorre na indústria de alimentos. Tais experimentos demonstraram a viabilidade do SIVQUAF para operar em modo contínuo, uma vez que ele é capaz processar uma imagem de 1280×720 pixels em aproximadamente 1,0 s, com taxas de acertos de 98,0% na segmentação, 99,0% na classificação e acima de 80,0% na detecção de defeitos.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-12-02T15:20:09Z No. of bitstreams: 1 Peterson Belan.pdf: 6829370 bytes, checksum: 77283b1d25a53b103cc922f0b42fc88f (MD5)Made available in DSpace on 2021-12-02T15:20:09Z (GMT). No. of bitstreams: 1 Peterson Belan.pdf: 6829370 bytes, checksum: 77283b1d25a53b103cc922f0b42fc88f (MD5) Previous issue date: 2019-02-07application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticaInspeção visualvisão computacionalinspeção da qualidadefeijãovisual inspectioncomputer visionquality inspectionbeansCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOSistema de visão computacional para inspeção da qualidade de grãos de feijãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALPeterson Belan.pdfPeterson Belan.pdfapplication/pdf6829370http://localhost:8080/tede/bitstream/tede/2793/2/Peterson+Belan.pdf77283b1d25a53b103cc922f0b42fc88fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2793/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/27932021-12-02 13:20:09.338oai:localhost:tede/2793Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-12-02T15:20:09Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false |
dc.title.por.fl_str_mv |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
title |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
spellingShingle |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão Belan, Peterson Adriano Inspeção visual visão computacional inspeção da qualidade feijão visual inspection computer vision quality inspection beans CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
title_full |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
title_fullStr |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
title_full_unstemmed |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
title_sort |
Sistema de visão computacional para inspeção da qualidade de grãos de feijão |
author |
Belan, Peterson Adriano |
author_facet |
Belan, Peterson Adriano |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Araújo, Sidnei Alves de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2542529753132844 |
dc.contributor.advisor-co1.fl_str_mv |
Alves, Wonder Alexandre Luz |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3138898469532698 |
dc.contributor.referee1.fl_str_mv |
Araújo, Sidnei Alves de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2542529753132844 |
dc.contributor.referee2.fl_str_mv |
Kim, Hae Yong |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7240386704593891 |
dc.contributor.referee3.fl_str_mv |
Santana, José Carlos Curvelo |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0408226658529368 |
dc.contributor.referee4.fl_str_mv |
Librantz, Andre Felipe Henriques |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3569470521730110 |
dc.contributor.referee5.fl_str_mv |
Dias, Cleber Gustavo |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/2147386441758156 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8197537484347198 |
dc.contributor.author.fl_str_mv |
Belan, Peterson Adriano |
contributor_str_mv |
Araújo, Sidnei Alves de Alves, Wonder Alexandre Luz Araújo, Sidnei Alves de Kim, Hae Yong Santana, José Carlos Curvelo Librantz, Andre Felipe Henriques Dias, Cleber Gustavo |
dc.subject.por.fl_str_mv |
Inspeção visual visão computacional inspeção da qualidade feijão |
topic |
Inspeção visual visão computacional inspeção da qualidade feijão visual inspection computer vision quality inspection beans CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
visual inspection computer vision quality inspection beans |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
The visual properties of many agricultural products, including bean grains, are important factors in determining their market prices and assisting consumer choice. Basically, the visual inspection of Brazilian bean quality is done manually following the operational procedures established by the Ministry of Agriculture, Livestock and Supply, which instruct how to frame the beans in group (according to botanical species), class (based on the color mixture of the skins) and type (the summary of defects found in the inspected sample. Manual quality inspection processes are usually subject to problems such as the high cost and difficulty of standardizing the results. In this context, it is important to use computational systems to support such processes in order to reduce operational costs and standardize results, generating a competitive differential for companies. In this work was developed a computer vision system to inspect beans quality (class and type determination), called SIVQUAF, composed of a set of software and hardware. For software design, computational approaches were proposed for segmentation, classification and defects detection. The hardware consists of an equipment developed with low-cost electromechanical materials, such as a table made of structural aluminum that includes an image acquisition chamber, servo motor and grain separation mechanism. Experiments were performed with SIVQUAF in two modes: individualized sample and continuous. For the first mode, we used a database composed of 270 images of bean samples, with different mixtures and defects, that was acquired with the use of the developed equipment. In the continuous (or online) mode, the beans contained in a batch, for example a bag of 1 kg, are spilled continuously on the conveyor belt for the system to perform the inspection, similar to what occurs in the food industry. These experiments demonstrated the feasibility of SIVQUAF to operate in continuous mode, since it is capable of processing an image of 1280×720 pixels in approximately 1.0 s, with success rates of 98.0% in segmentation, 99.0% in classification and more than 80.0% in defects detection. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-02-07 |
dc.date.accessioned.fl_str_mv |
2021-12-02T15:20:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
dc.identifier.uri.fl_str_mv |
http://bibliotecatede.uninove.br/handle/tede/2793 |
identifier_str_mv |
Belan, Peterson Adriano. Sistema de visão computacional para inspeção da qualidade de grãos de feijão. 2019. 119 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
url |
http://bibliotecatede.uninove.br/handle/tede/2793 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
dc.relation.confidence.fl_str_mv |
600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
dc.publisher.initials.fl_str_mv |
UNINOVE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Informática |
publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Uninove instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
instname_str |
Universidade Nove de Julho (UNINOVE) |
instacron_str |
UNINOVE |
institution |
UNINOVE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
collection |
Biblioteca Digital de Teses e Dissertações da Uninove |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/2793/2/Peterson+Belan.pdf http://localhost:8080/tede/bitstream/tede/2793/1/license.txt |
bitstream.checksum.fl_str_mv |
77283b1d25a53b103cc922f0b42fc88f bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE) |
repository.mail.fl_str_mv |
bibliotecatede@uninove.br||bibliotecatede@uninove.br |
_version_ |
1811016885540487168 |