Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse

Detalhes bibliográficos
Autor(a) principal: Delgado, Sabrinna
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/3243
Resumo: Every year the number of people in the world affected by mental disorders (MD) increases, among which are depression, anxiety and stress that have been more common and that are usually related to the modern lifestyle. The first two belong to the group of the main diseases of the 21st century and can lead to serious consequences, such as suicide. According to the Pan World Health Organization (WHO), depression impacts the daily lives of more than 300 million people, being considered one of the most important diseases in the world. Additionally, an estimated 12 billion workdays are lost annually worldwide due to depression and anxiety, impacting nearly a trillion dollars on the global economy. TM treatment may include, in addition to medication and psychotherapies, which are essential, the use of technological resources, such as Artificial Intelligence (AI) to indicate therapies and personalized care. In the literature, there are several AI approaches applied in the context of MT, but it is very common that they are focused on aiding the diagnosis. This research proposes an AI method for mapping symptoms and helping to treat depression, anxiety and stress. First, data mining (DM) techniques are applied to generate rules that, in addition to mapping the symptoms, represent knowledge about a database containing data from 242 patients, collected from a test called DASS-21 (Depression, Anxiety and StressScale). Then, the generated set of rules is used to compose a Fuzzy Inference System (FIS) capable of making predictions about MDs based on the main symptoms and some personal data of the patient. The high hit rates in the DM tasks (above 90%) indicating the existence of consistent patterns and the results produced by the FIS demonstrate that the proposed method can help health professionals in the rapid prediction of symptoms of depression, anxiety and stress, in outpatient screening and in emergency care. It can also be useful for a better association of symptoms, therapeutic proposals and even investigations of other diseases not related to mental health, providing differential diagnoses and treatments.
id NOVE_d6bedf36585e84f83bc532eb0aefbdb0
oai_identifier_str oai:localhost:tede/3243
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Belan, Peterson Adrianohttp://lattes.cnpq.br/8197537484347198Vignola, Rose Claudia Batistellihttp://lattes.cnpq.br/9363473167603411Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610http://lattes.cnpq.br/8004435076868322Delgado, Sabrinna2023-12-04T15:51:57Z2023-06-28Delgado, Sabrinna. Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse. 2023. 71 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3243Every year the number of people in the world affected by mental disorders (MD) increases, among which are depression, anxiety and stress that have been more common and that are usually related to the modern lifestyle. The first two belong to the group of the main diseases of the 21st century and can lead to serious consequences, such as suicide. According to the Pan World Health Organization (WHO), depression impacts the daily lives of more than 300 million people, being considered one of the most important diseases in the world. Additionally, an estimated 12 billion workdays are lost annually worldwide due to depression and anxiety, impacting nearly a trillion dollars on the global economy. TM treatment may include, in addition to medication and psychotherapies, which are essential, the use of technological resources, such as Artificial Intelligence (AI) to indicate therapies and personalized care. In the literature, there are several AI approaches applied in the context of MT, but it is very common that they are focused on aiding the diagnosis. This research proposes an AI method for mapping symptoms and helping to treat depression, anxiety and stress. First, data mining (DM) techniques are applied to generate rules that, in addition to mapping the symptoms, represent knowledge about a database containing data from 242 patients, collected from a test called DASS-21 (Depression, Anxiety and StressScale). Then, the generated set of rules is used to compose a Fuzzy Inference System (FIS) capable of making predictions about MDs based on the main symptoms and some personal data of the patient. The high hit rates in the DM tasks (above 90%) indicating the existence of consistent patterns and the results produced by the FIS demonstrate that the proposed method can help health professionals in the rapid prediction of symptoms of depression, anxiety and stress, in outpatient screening and in emergency care. It can also be useful for a better association of symptoms, therapeutic proposals and even investigations of other diseases not related to mental health, providing differential diagnoses and treatments.A cada ano é crescente o número de pessoas no mundo acometidas por transtornos mentais (TM), entre os quais estão a depressão, a ansiedade e o estresse que têm sido os mais comuns e que normalmente estão associados ao estilo de vida moderno. Os dois primeiros TM pertencem ao grupo das principais doenças do século XXI e podem levar a consequências graves, como o suicídio. De acordo com a Organização Mundial de Saúde (OMS), a depressão impacta a rotina de vida de mais de 300 milhões de pessoas, sendo considerada uma das doenças mais importantes do mundo. Além disso, estima-se que 12 bilhões de dias de trabalho são perdidos anualmente no mundo devido à depressão e à ansiedade, impactando em quase um trilhão de dólares na economia global. O tratamento de TM pode incluir, além de medicamentos e psicoterapias, que são essenciais, o emprego de recursos tecnológicos, como a Inteligência Artificial (IA) para indicar terapias e cuidados personalizados. Na literatura existem diversas abordagens de IA aplicadas no contexto de TM, mas é muito comum que elas sejam focadas no auxílio ao diagnóstico. Nesta pesquisa propõe-se um método de IA para mapeamento de sintomas e auxílio ao tratamento de depressão, ansiedade e estresse. Primeiro são aplicadas técnicas de mineração de dados (MD) para geração de regras que, além de mapear os sintomas, representam conhecimentos acerca de uma base contendo dados de 242 pacientes, coletados a partir de um teste denominado DASS-21 (Depression, Anxiety and Stress Scale). Em seguida, o conjunto de regras gerado é usado para compor um Sistema de Inferência Fuzzy (SIF) capaz de fazer predições sobre os TM a partir dos principais sintomas e de alguns dados pessoais do paciente. As altas taxas de acerto nas tarefas de MD (acima de 90%) indicando a existência de padrões consistentes e os resultados obtidos pelo SIF demonstram que o método proposto pode auxiliar os profissionais de saúde na rápida predição de sintomas de depressão, ansiedade e estresse, em triagem ambulatorial e em pronto atendimento. Ele também pode ser útil para uma melhor associação de sintomas, propostas terapêuticas e até mesmo investigações de outras doenças não relacionadas à saúde mental, propiciando diagnósticos e tratamentos diferenciais.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2023-12-04T15:51:57Z No. of bitstreams: 1 Sabrinna Delgado.pdf: 2089968 bytes, checksum: c5e8a268988cc175165cffbb8223137a (MD5)Made available in DSpace on 2023-12-04T15:51:57Z (GMT). No. of bitstreams: 1 Sabrinna Delgado.pdf: 2089968 bytes, checksum: c5e8a268988cc175165cffbb8223137a (MD5) Previous issue date: 2023-06-28application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticatranstornos mentaisDASS-21mapeamento de sintomasinteligência artificialmineração de dadoslógica fuzzymental disordersDASS-21symptoms mappingartificial intelligencedata miningfuzzy logicCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOInteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALSabrinna Delgado.pdfSabrinna Delgado.pdfapplication/pdf2089968http://localhost:8080/tede/bitstream/tede/3243/2/Sabrinna+Delgado.pdfc5e8a268988cc175165cffbb8223137aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3243/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/32432023-12-04 12:51:57.48oai:localhost:tede/3243Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2023-12-04T15:51:57Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
title Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
spellingShingle Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
Delgado, Sabrinna
transtornos mentais
DASS-21
mapeamento de sintomas
inteligência artificial
mineração de dados
lógica fuzzy
mental disorders
DASS-21
symptoms mapping
artificial intelligence
data mining
fuzzy logic
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
title_full Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
title_fullStr Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
title_full_unstemmed Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
title_sort Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse
author Delgado, Sabrinna
author_facet Delgado, Sabrinna
author_role author
dc.contributor.advisor1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee2.fl_str_mv Belan, Peterson Adriano
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8197537484347198
dc.contributor.referee3.fl_str_mv Vignola, Rose Claudia Batistelli
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/9363473167603411
dc.contributor.referee4.fl_str_mv Sassi, Renato José
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8004435076868322
dc.contributor.author.fl_str_mv Delgado, Sabrinna
contributor_str_mv Araújo, Sidnei Alves de
Araújo, Sidnei Alves de
Belan, Peterson Adriano
Vignola, Rose Claudia Batistelli
Sassi, Renato José
dc.subject.por.fl_str_mv transtornos mentais
DASS-21
mapeamento de sintomas
inteligência artificial
mineração de dados
lógica fuzzy
topic transtornos mentais
DASS-21
mapeamento de sintomas
inteligência artificial
mineração de dados
lógica fuzzy
mental disorders
DASS-21
symptoms mapping
artificial intelligence
data mining
fuzzy logic
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv mental disorders
DASS-21
symptoms mapping
artificial intelligence
data mining
fuzzy logic
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Every year the number of people in the world affected by mental disorders (MD) increases, among which are depression, anxiety and stress that have been more common and that are usually related to the modern lifestyle. The first two belong to the group of the main diseases of the 21st century and can lead to serious consequences, such as suicide. According to the Pan World Health Organization (WHO), depression impacts the daily lives of more than 300 million people, being considered one of the most important diseases in the world. Additionally, an estimated 12 billion workdays are lost annually worldwide due to depression and anxiety, impacting nearly a trillion dollars on the global economy. TM treatment may include, in addition to medication and psychotherapies, which are essential, the use of technological resources, such as Artificial Intelligence (AI) to indicate therapies and personalized care. In the literature, there are several AI approaches applied in the context of MT, but it is very common that they are focused on aiding the diagnosis. This research proposes an AI method for mapping symptoms and helping to treat depression, anxiety and stress. First, data mining (DM) techniques are applied to generate rules that, in addition to mapping the symptoms, represent knowledge about a database containing data from 242 patients, collected from a test called DASS-21 (Depression, Anxiety and StressScale). Then, the generated set of rules is used to compose a Fuzzy Inference System (FIS) capable of making predictions about MDs based on the main symptoms and some personal data of the patient. The high hit rates in the DM tasks (above 90%) indicating the existence of consistent patterns and the results produced by the FIS demonstrate that the proposed method can help health professionals in the rapid prediction of symptoms of depression, anxiety and stress, in outpatient screening and in emergency care. It can also be useful for a better association of symptoms, therapeutic proposals and even investigations of other diseases not related to mental health, providing differential diagnoses and treatments.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-04T15:51:57Z
dc.date.issued.fl_str_mv 2023-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Delgado, Sabrinna. Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse. 2023. 71 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3243
identifier_str_mv Delgado, Sabrinna. Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse. 2023. 71 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3243
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3243/2/Sabrinna+Delgado.pdf
http://localhost:8080/tede/bitstream/tede/3243/1/license.txt
bitstream.checksum.fl_str_mv c5e8a268988cc175165cffbb8223137a
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016890433142784