Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública

Detalhes bibliográficos
Autor(a) principal: Andrelo, Pamela Ferreira Alves
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/3050
Resumo: The Public Technical Schools of the State of São Paulo, acronym in portuguese language ETECS have sought improvements aimed at the training of their students, through the analysis of data from their graduates who passed the entrance exam, to support educational management in the development of education strategies, with a view to passing these exams and being placed in a job vacancy. The performance of these graduates can be analyzed with the application of Educational Data Mining (EDM). The general objective of this work was to identify and analyze the profile of graduates from public technical schools who passed the entrance exam, using Educational Data Mining to implement changes that support educational management in the development of educational strategies. ETEC Paulistano, object of study of this work, has a student body composed of 95% of students from the Vila Brasilândia region, 70% of them coming from the municipal public school. Three questionnaires were applied to the graduates of the classes from 2016 to 2018, 2019 and 2020. To mine the results, five steps were applied, based on the phases of the Knowledge Discovery in Databases (KDD) process: Selection and Data Collection; Data Pre-Processing; Educational Data Mining; Interpreting and Analyzing Discovered Knowledge and Implementing Changes. The identification of the graduate's profile made it possible to implement changes based on the analysis of the results of the questionnaire for the years 2016 to 2018, resulting in the creation of two new courses and a reduction in the daily workload of the courses from 8 to 6 hours; predict the implementation of changes based on the analysis of the results of the questionnaires for the years 2019 and 2020, highlighting the need for training course coordinators and teachers and practical classes requested by the environment class, among others; and consider implementing changes that can be made based on the analysis of the results of the 2019 and 2020 questionnaires, such as technical visits to companies and workshops with professionals in the area, among others. It was concluded, then, that EDM enabled the implementation of changes, which subsidized educational management in the development of educational strategies.
id NOVE_e1c3511047f74123f762a108784c32f6
oai_identifier_str oai:localhost:tede/3050
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Ferreira, Ricardo Pintohttp://lattes.cnpq.br/5356507119071651Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486http://lattes.cnpq.br/9935733808376878Andrelo, Pamela Ferreira Alves2022-08-15T16:29:28Z2022-02-25Andrelo, Pamela Ferreira Alves. Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública. 2022. 129 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3050The Public Technical Schools of the State of São Paulo, acronym in portuguese language ETECS have sought improvements aimed at the training of their students, through the analysis of data from their graduates who passed the entrance exam, to support educational management in the development of education strategies, with a view to passing these exams and being placed in a job vacancy. The performance of these graduates can be analyzed with the application of Educational Data Mining (EDM). The general objective of this work was to identify and analyze the profile of graduates from public technical schools who passed the entrance exam, using Educational Data Mining to implement changes that support educational management in the development of educational strategies. ETEC Paulistano, object of study of this work, has a student body composed of 95% of students from the Vila Brasilândia region, 70% of them coming from the municipal public school. Three questionnaires were applied to the graduates of the classes from 2016 to 2018, 2019 and 2020. To mine the results, five steps were applied, based on the phases of the Knowledge Discovery in Databases (KDD) process: Selection and Data Collection; Data Pre-Processing; Educational Data Mining; Interpreting and Analyzing Discovered Knowledge and Implementing Changes. The identification of the graduate's profile made it possible to implement changes based on the analysis of the results of the questionnaire for the years 2016 to 2018, resulting in the creation of two new courses and a reduction in the daily workload of the courses from 8 to 6 hours; predict the implementation of changes based on the analysis of the results of the questionnaires for the years 2019 and 2020, highlighting the need for training course coordinators and teachers and practical classes requested by the environment class, among others; and consider implementing changes that can be made based on the analysis of the results of the 2019 and 2020 questionnaires, such as technical visits to companies and workshops with professionals in the area, among others. It was concluded, then, that EDM enabled the implementation of changes, which subsidized educational management in the development of educational strategies.As Escolas Técnicas Públicas do Estado de São Paulo (ETECS) têm buscado melhorias direcionadas à formação do seu discente, por meio da análise de dados de seus egressos aprovados em exames vestibulares, para apoiar a gestão educacional no desenvolvimento de estratégias educacionais, com vistas à aprovação nestes exames e alocação em uma vaga de emprego. Pode-se analisar o desempenho destes egressos com a aplicação da Mineração de Dados Educacionais (MDE). O objetivo geral deste trabalho foi identificar e analisar o perfil dos egressos de escola técnica pública aprovados em exames vestibulares, com o uso da Mineração de Dados Educacionais, para implementar mudanças, que apoiem a gestão educacional no desenvolvimento de estratégias educacionais. A ETEC Paulistano, objeto de estudo deste trabalho, conta com um corpo discente composto por 95% de alunos da região da Vila Brasilândia, sendo que 70% deles vêm da escola pública municipal. Foram aplicados três questionários para os egressos das turmas dos anos de 2016 a 2018, do ano de 2019 e de 2020. Para minerar os resultados, cinco etapas foram aplicadas, baseadas nas fases do processo de Descoberta de Conhecimento em Bases de Dados: Seleção e Coleta dos Dados; Pré- Processamento dos Dados; Mineração de Dados Educacionais; Interpretação e Análise do Conhecimento Descoberto e Implementação de Mudanças. A identificação do perfil do egresso possibilitou implementar mudanças com base na análise dos resultados do questionário dos anos de 2016 a 2018, resultando na criação de dois novos cursos e na redução da carga horária diária dos cursos de 8 para 6 horas; prever a implementação de mudanças com base na análise dos resultados dos questionários dos anos de 2019 e 2020, destacando a necessidade de capacitação das coordenações dos cursos e dos docentes e de aulas práticas requisitadas pela turma de Meio Ambiente, entre outras; e considerar implementações de mudanças que poderão ser realizadas com base na análise dos resultados dos questionários dos anos de 2019 e 2020 como a realização de visitas técnicas em empresas e workshops com profissionais da área, entre outras. Concluiu-se então que, a MDE possibilitou implementar mudanças, que apoiaram a gestão educacional no desenvolvimento de estratégias educacionais.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-08-15T16:29:28Z No. of bitstreams: 1 Pamela Ferreira Alves Andrelo.pdf: 2399987 bytes, checksum: 3fbd651a100fa951c488c2fe97225d3d (MD5)Made available in DSpace on 2022-08-15T16:29:28Z (GMT). No. of bitstreams: 1 Pamela Ferreira Alves Andrelo.pdf: 2399987 bytes, checksum: 3fbd651a100fa951c488c2fe97225d3d (MD5) Previous issue date: 2022-02-25application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticamineração de dados educacionaisETECperfil dos egressosCentro Paula Souzagestão educacionaleducational data miningETECgraduate profilesCentro Paula Souzaeducational managementCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOMineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica públicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALPamela Ferreira Alves Andrelo.pdfPamela Ferreira Alves Andrelo.pdfapplication/pdf2399987http://localhost:8080/tede/bitstream/tede/3050/2/Pamela+Ferreira+Alves+Andrelo.pdf3fbd651a100fa951c488c2fe97225d3dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3050/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30502022-08-15 13:29:28.913oai:localhost:tede/3050Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2022-08-15T16:29:28Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
title Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
spellingShingle Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
Andrelo, Pamela Ferreira Alves
mineração de dados educacionais
ETEC
perfil dos egressos
Centro Paula Souza
gestão educacional
educational data mining
ETEC
graduate profiles
Centro Paula Souza
educational management
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
title_full Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
title_fullStr Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
title_full_unstemmed Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
title_sort Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública
author Andrelo, Pamela Ferreira Alves
author_facet Andrelo, Pamela Ferreira Alves
author_role author
dc.contributor.advisor1.fl_str_mv Sassi, Renato José
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee1.fl_str_mv Sassi, Renato José
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee2.fl_str_mv Ferreira, Ricardo Pinto
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5356507119071651
dc.contributor.referee3.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9935733808376878
dc.contributor.author.fl_str_mv Andrelo, Pamela Ferreira Alves
contributor_str_mv Sassi, Renato José
Sassi, Renato José
Ferreira, Ricardo Pinto
Gaspar, Marcos Antônio
dc.subject.por.fl_str_mv mineração de dados educacionais
ETEC
perfil dos egressos
Centro Paula Souza
gestão educacional
topic mineração de dados educacionais
ETEC
perfil dos egressos
Centro Paula Souza
gestão educacional
educational data mining
ETEC
graduate profiles
Centro Paula Souza
educational management
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv educational data mining
ETEC
graduate profiles
Centro Paula Souza
educational management
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description The Public Technical Schools of the State of São Paulo, acronym in portuguese language ETECS have sought improvements aimed at the training of their students, through the analysis of data from their graduates who passed the entrance exam, to support educational management in the development of education strategies, with a view to passing these exams and being placed in a job vacancy. The performance of these graduates can be analyzed with the application of Educational Data Mining (EDM). The general objective of this work was to identify and analyze the profile of graduates from public technical schools who passed the entrance exam, using Educational Data Mining to implement changes that support educational management in the development of educational strategies. ETEC Paulistano, object of study of this work, has a student body composed of 95% of students from the Vila Brasilândia region, 70% of them coming from the municipal public school. Three questionnaires were applied to the graduates of the classes from 2016 to 2018, 2019 and 2020. To mine the results, five steps were applied, based on the phases of the Knowledge Discovery in Databases (KDD) process: Selection and Data Collection; Data Pre-Processing; Educational Data Mining; Interpreting and Analyzing Discovered Knowledge and Implementing Changes. The identification of the graduate's profile made it possible to implement changes based on the analysis of the results of the questionnaire for the years 2016 to 2018, resulting in the creation of two new courses and a reduction in the daily workload of the courses from 8 to 6 hours; predict the implementation of changes based on the analysis of the results of the questionnaires for the years 2019 and 2020, highlighting the need for training course coordinators and teachers and practical classes requested by the environment class, among others; and consider implementing changes that can be made based on the analysis of the results of the 2019 and 2020 questionnaires, such as technical visits to companies and workshops with professionals in the area, among others. It was concluded, then, that EDM enabled the implementation of changes, which subsidized educational management in the development of educational strategies.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-15T16:29:28Z
dc.date.issued.fl_str_mv 2022-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Andrelo, Pamela Ferreira Alves. Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública. 2022. 129 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3050
identifier_str_mv Andrelo, Pamela Ferreira Alves. Mineração de dados educacionais na identificação do perfil dos egressos para apoio à gestão educacional de escola técnica pública. 2022. 129 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3050
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3050/2/Pamela+Ferreira+Alves+Andrelo.pdf
http://localhost:8080/tede/bitstream/tede/3050/1/license.txt
bitstream.checksum.fl_str_mv 3fbd651a100fa951c488c2fe97225d3d
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016888813092864