Muscle glycogen metabolism during exercise: mechanism of regulation

Detalhes bibliográficos
Autor(a) principal: LIMA-SILVA, Adriano Eduardo
Data de Publicação: 2023
Outros Autores: Charles FERNANDES, Tony, DE-OLIVEIRA, Fernando Roberto, Yuzo NAKAMURA, Fábio, da Silva GEVAERD, Monique
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Nutrição
Texto Completo: https://periodicos.puc-campinas.edu.br/nutricao/article/view/9697
Resumo: A large number of studies have been conducted to understand muscle glycogen metabolism during exercise. Classical studies demonstrated a relationship between the pre-exercise muscle glycogen content and duration of exercise. Muscle glycogen declines in a semilogarithmic manner in function of time, but glycogen concentration does not reach zero, which suggests that other fatigue mechanisms participate in the interruption of prolonged exercise. In this type of activity, glycogen depletion occurs first in slow twitch fibers followed by fast twitch fibers. The decrease in the rate of muscle glycogen utilization is synchronized with an increased rate of fat uptake, but the physiological mechanism is not well understood. Recent studies suggest that the decline of insulin during exercise could be a limiting factor of glucose transport through the plasma membrane, which increases the uptake of fatty acids. Others studies have also demonstrated that the structure of muscle glycogen itself can regulate the cellular uptake of free fatty acids via protein kinase. Physically, the glycogen molecule has two forms, one with a smaller molecular structure (approximately 4.105 Da, proglycogen) and another one with a larger molecular structure (approximately 107 Da, macroglycogen). Apparently, theproglycogen form is more metabolically active during exercise and the macroglycogen form is more susceptible to increase with supercompensation diets. Higher concentrations of hypoxanthines and ammonia during exercise with muscle glycogen depletion have been reported, but studies that control exercise intensity better are necessary to help shed light on this issue.
id PUC_CAMP-2_1f77f269eeab5632801c18446fe0c51e
oai_identifier_str oai:ojs.periodicos.puc-campinas.edu.br:article/9697
network_acronym_str PUC_CAMP-2
network_name_str Revista de Nutrição
repository_id_str
spelling Muscle glycogen metabolism during exercise: mechanism of regulationMetabolismo do glicogênio muscular durante o exercício físico: mecanismos de regulaçãomuscle glycogenhypoxanthinesinsulinmetabolismexerciseglicogênio muscularhipoxantinasinsulinametabolismoexercícioA large number of studies have been conducted to understand muscle glycogen metabolism during exercise. Classical studies demonstrated a relationship between the pre-exercise muscle glycogen content and duration of exercise. Muscle glycogen declines in a semilogarithmic manner in function of time, but glycogen concentration does not reach zero, which suggests that other fatigue mechanisms participate in the interruption of prolonged exercise. In this type of activity, glycogen depletion occurs first in slow twitch fibers followed by fast twitch fibers. The decrease in the rate of muscle glycogen utilization is synchronized with an increased rate of fat uptake, but the physiological mechanism is not well understood. Recent studies suggest that the decline of insulin during exercise could be a limiting factor of glucose transport through the plasma membrane, which increases the uptake of fatty acids. Others studies have also demonstrated that the structure of muscle glycogen itself can regulate the cellular uptake of free fatty acids via protein kinase. Physically, the glycogen molecule has two forms, one with a smaller molecular structure (approximately 4.105 Da, proglycogen) and another one with a larger molecular structure (approximately 107 Da, macroglycogen). Apparently, theproglycogen form is more metabolically active during exercise and the macroglycogen form is more susceptible to increase with supercompensation diets. Higher concentrations of hypoxanthines and ammonia during exercise with muscle glycogen depletion have been reported, but studies that control exercise intensity better are necessary to help shed light on this issue.Uma série de estudos tem sido realizada para compreensão do metabolismo de glicogênio muscular durante o exercício. Estudos clássicos apontaram uma associação entre as reservas iniciais de glicogênio muscular e o tempo de sustentação do esforço. O glicogênio muscular diminui de forma semi-logarítmica em função do tempo, mas a concentração desse substrato não chega a zero, o que sugere a participação de outros mecanismos de fadiga na interrupção do exercício prolongado. Nesse tipo de atividade, a depleção de glicogênio, primeiro, ocorre nas fibras de contração lenta, seguida pela depleção nas de contração rápida. A diminuição na taxa de utilização de glicogênio muscular está sincronicamente ligada ao aumento no metabolismo de gordura, mas o mecanismo fisiológico é pouco compreendido. Estudos recentes sugerem que uma diminuição da insulina durante o exercício limitaria o transporte de glicose pela membrana plasmática, causando um aumento no consumo de ácidos graxos. Alguns estudos têm demonstrado, também, que a própria estrutura do glicogênio muscular pode controlar a entrada de ácidos graxos livres na célula, via proteína quinase. Fisicamente, a molécula de glicogênio se apresenta de duas formas, uma com estrutura molecular menor (aproximadamente, 4,105 Da, Proglicogênio) e outra maior (aproximadamente, 107 Da, Macroglicogênio). Aparentemente, a forma Proglicogênio é metabolicamente mais ativa no exercício e a Macroglicogênio mais suscetível a aumentar com dietas de supercompensação. Maior concentração de hipoxantinas e amônia no exercício com depleção de glicogênio muscular também foi relatada, mas estudos com melhor controle da intensidade do esforço podem ajudar a elucidar essa questão.Núcleo de Editoração – PUC-Campinas2023-09-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.puc-campinas.edu.br/nutricao/article/view/9697Brazilian Journal of Nutrition; Vol. 20 No. 4 (2007): Revista de NutriçãoRevista de Nutrição; Vol. 20 Núm. 4 (2007): Revista de NutriçãoRevista de Nutrição; v. 20 n. 4 (2007): Revista de Nutrição1678-9865reponame:Revista de Nutriçãoinstname:Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS)instacron:PUC_CAMPporhttps://periodicos.puc-campinas.edu.br/nutricao/article/view/9697/7044Copyright (c) 2023 Adriano Eduardo LIMA-SILVA, Tony Charles FERNANDES, Fernando Roberto DE-OLIVEIRA, Fábio Yuzo NAKAMURA, Monique da Silva GEVAERDhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLIMA-SILVA, Adriano Eduardo Charles FERNANDES, Tony DE-OLIVEIRA, Fernando Roberto Yuzo NAKAMURA, Fábioda Silva GEVAERD, Monique 2023-10-05T18:44:33Zoai:ojs.periodicos.puc-campinas.edu.br:article/9697Revistahttp://www.scielo.br/rnPRIhttps://periodicos.puc-campinas.edu.br/nutricao/oai||sbi.submissionrn@puc-campinas.edu.br1678-98651415-5273opendoar:2023-10-05T18:44:33Revista de Nutrição - Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS)false
dc.title.none.fl_str_mv Muscle glycogen metabolism during exercise: mechanism of regulation
Metabolismo do glicogênio muscular durante o exercício físico: mecanismos de regulação
title Muscle glycogen metabolism during exercise: mechanism of regulation
spellingShingle Muscle glycogen metabolism during exercise: mechanism of regulation
LIMA-SILVA, Adriano Eduardo
muscle glycogen
hypoxanthines
insulin
metabolism
exercise
glicogênio muscular
hipoxantinas
insulina
metabolismo
exercício
title_short Muscle glycogen metabolism during exercise: mechanism of regulation
title_full Muscle glycogen metabolism during exercise: mechanism of regulation
title_fullStr Muscle glycogen metabolism during exercise: mechanism of regulation
title_full_unstemmed Muscle glycogen metabolism during exercise: mechanism of regulation
title_sort Muscle glycogen metabolism during exercise: mechanism of regulation
author LIMA-SILVA, Adriano Eduardo
author_facet LIMA-SILVA, Adriano Eduardo
Charles FERNANDES, Tony
DE-OLIVEIRA, Fernando Roberto
Yuzo NAKAMURA, Fábio
da Silva GEVAERD, Monique
author_role author
author2 Charles FERNANDES, Tony
DE-OLIVEIRA, Fernando Roberto
Yuzo NAKAMURA, Fábio
da Silva GEVAERD, Monique
author2_role author
author
author
author
dc.contributor.author.fl_str_mv LIMA-SILVA, Adriano Eduardo
Charles FERNANDES, Tony
DE-OLIVEIRA, Fernando Roberto
Yuzo NAKAMURA, Fábio
da Silva GEVAERD, Monique
dc.subject.por.fl_str_mv muscle glycogen
hypoxanthines
insulin
metabolism
exercise
glicogênio muscular
hipoxantinas
insulina
metabolismo
exercício
topic muscle glycogen
hypoxanthines
insulin
metabolism
exercise
glicogênio muscular
hipoxantinas
insulina
metabolismo
exercício
description A large number of studies have been conducted to understand muscle glycogen metabolism during exercise. Classical studies demonstrated a relationship between the pre-exercise muscle glycogen content and duration of exercise. Muscle glycogen declines in a semilogarithmic manner in function of time, but glycogen concentration does not reach zero, which suggests that other fatigue mechanisms participate in the interruption of prolonged exercise. In this type of activity, glycogen depletion occurs first in slow twitch fibers followed by fast twitch fibers. The decrease in the rate of muscle glycogen utilization is synchronized with an increased rate of fat uptake, but the physiological mechanism is not well understood. Recent studies suggest that the decline of insulin during exercise could be a limiting factor of glucose transport through the plasma membrane, which increases the uptake of fatty acids. Others studies have also demonstrated that the structure of muscle glycogen itself can regulate the cellular uptake of free fatty acids via protein kinase. Physically, the glycogen molecule has two forms, one with a smaller molecular structure (approximately 4.105 Da, proglycogen) and another one with a larger molecular structure (approximately 107 Da, macroglycogen). Apparently, theproglycogen form is more metabolically active during exercise and the macroglycogen form is more susceptible to increase with supercompensation diets. Higher concentrations of hypoxanthines and ammonia during exercise with muscle glycogen depletion have been reported, but studies that control exercise intensity better are necessary to help shed light on this issue.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.puc-campinas.edu.br/nutricao/article/view/9697
url https://periodicos.puc-campinas.edu.br/nutricao/article/view/9697
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.puc-campinas.edu.br/nutricao/article/view/9697/7044
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Núcleo de Editoração – PUC-Campinas
publisher.none.fl_str_mv Núcleo de Editoração – PUC-Campinas
dc.source.none.fl_str_mv Brazilian Journal of Nutrition; Vol. 20 No. 4 (2007): Revista de Nutrição
Revista de Nutrição; Vol. 20 Núm. 4 (2007): Revista de Nutrição
Revista de Nutrição; v. 20 n. 4 (2007): Revista de Nutrição
1678-9865
reponame:Revista de Nutrição
instname:Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS)
instacron:PUC_CAMP
instname_str Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS)
instacron_str PUC_CAMP
institution PUC_CAMP
reponame_str Revista de Nutrição
collection Revista de Nutrição
repository.name.fl_str_mv Revista de Nutrição - Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS)
repository.mail.fl_str_mv ||sbi.submissionrn@puc-campinas.edu.br
_version_ 1799126074649477120