PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) |
Texto Completo: | http://localhost:8080/tede/handle/tede/2486 |
Resumo: | A previsão de demanda é de essencial importância em ambientes organizacionais, de forma a servir como ferramenta de apoio a tomada de decisão durante o desenvolvimento do planejamento estratégico das empresas. Este trabalho teve como principal objetivo comparar modelos estatísticos e de inteligência artificial para problemas de previsão de demanda utilizando séries temporais por meio dos métodos de Box-Jenkins e rede neural artificial Multilayer Perceptron (MLP). Realizou-se o estudo para identificação e definição dos principais métodos de previsão de demanda. Posteriormente, aplicaram-se os métodos de previsão selecionados para a análise dos três produtos mais relevantes de uma indústria metal mecânica, no período de 2012 até 2014. Os quatro últimos períodos da série foram utilizados apenas para validação de desempenho de ambos os métodos propostos através das análises dos erros de previsão. Os softwares R, Matlab e SPSS apoiaram a aplicação, modelagem e análise dos dados. A partir dos modelos, realizou-se a previsão um passo a frente das vendas de uma indústria metal mecânica e posteriormente fez-se o comparativo de seus resultados através das medidas de erros referentes à raiz quadrada do erro quadrático médio, RMSE, e o erro percentual absoluto médio, MAPE, para identificar o modelo mais satisfatório e adequado para a predição. Os resultados indicaram que o desempenho das previsões utilizando o método estatístico de Box-Jenkins nos Produtos 1 e 3 foram superiores à aplicação dos modelos de rede neural MLP. Enquanto que para o Produto 2, o método de redes neurais alcançou melhores resultados. Nas análises estatísticas verificou-se que as séries apresentam padrões de comportamento referente à sazonalidade e oscilações, sendo possível observar que ambos os métodos apresentam resultados satisfatórios para cada característica de dados das séries temporais estudadas. |
id |
PUC_GO_44aa8337c01c96e170e05408cc0c9ca0 |
---|---|
oai_identifier_str |
oai:ambar:tede/2486 |
network_acronym_str |
PUC_GO |
network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) |
repository_id_str |
6593 |
spelling |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP.Séries temporaisBox-JenkinsRedes Neurais MLPIndústriaPrevisão de demandaTemporal seriesBox-JenkinsArtificial Neural Networks MLPIndustryDemand forecastingCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOA previsão de demanda é de essencial importância em ambientes organizacionais, de forma a servir como ferramenta de apoio a tomada de decisão durante o desenvolvimento do planejamento estratégico das empresas. Este trabalho teve como principal objetivo comparar modelos estatísticos e de inteligência artificial para problemas de previsão de demanda utilizando séries temporais por meio dos métodos de Box-Jenkins e rede neural artificial Multilayer Perceptron (MLP). Realizou-se o estudo para identificação e definição dos principais métodos de previsão de demanda. Posteriormente, aplicaram-se os métodos de previsão selecionados para a análise dos três produtos mais relevantes de uma indústria metal mecânica, no período de 2012 até 2014. Os quatro últimos períodos da série foram utilizados apenas para validação de desempenho de ambos os métodos propostos através das análises dos erros de previsão. Os softwares R, Matlab e SPSS apoiaram a aplicação, modelagem e análise dos dados. A partir dos modelos, realizou-se a previsão um passo a frente das vendas de uma indústria metal mecânica e posteriormente fez-se o comparativo de seus resultados através das medidas de erros referentes à raiz quadrada do erro quadrático médio, RMSE, e o erro percentual absoluto médio, MAPE, para identificar o modelo mais satisfatório e adequado para a predição. Os resultados indicaram que o desempenho das previsões utilizando o método estatístico de Box-Jenkins nos Produtos 1 e 3 foram superiores à aplicação dos modelos de rede neural MLP. Enquanto que para o Produto 2, o método de redes neurais alcançou melhores resultados. Nas análises estatísticas verificou-se que as séries apresentam padrões de comportamento referente à sazonalidade e oscilações, sendo possível observar que ambos os métodos apresentam resultados satisfatórios para cada característica de dados das séries temporais estudadas.The demand forecasting is of essential importance for business environments, in a way to serve as a decision making supporting tool during the development of companies strategic planning. This work strived to compare statistics with artificial intelligence methods applied to provisioning on demand issues using temporal series through Box-Jenkins and Artificial Neural Networks Multilayer Perceptron (MLP) methods. Studies were performed to identify and define the main demand forecasting methods. Subsequently, the selected prediction methods for the analysis of the three most relevant products of a metalworking industry were applied in the period 2012 to 2014. The four last periods were used only for performance validation of both methods, through the analysis of forecast errors. Softwares R, Matlab and SPSS supported the data deployment, modeling and analysis. From those models, a step ahead provisioning of sales of a metal mechanic industry was performed, followed by the comparison of the errors of each method based on root mean squared error, RMSE, and mean absolute percentage error, MAPE, to identify the most satisfactory and adequate provisioning method. The results indicated that the performance of the forecasts using the statistical method of Box-Jenkins in Products 1 and 3 were higher than the application of the MLP neural network models. While, for Product 2 the method of neural networks achieved better results. In the statistics analysis, one could verify that the series present some behavior patterns associated to seasonality and oscillations, being possible to observe that both methods show satisfactory results for each data characteristics of the temporal series.Pontifícia Universidade Católica de GoiásEngenhariaBRPUC GoiásEngenharia de Produção e SistemasDantas, Maria José Pereirahttp://lattes.cnpq.br/5115002204148904Carmo, Iran Martins dohttp://lattes.cnpq.br/2418951329099161Vieira, Sibelius Lellishttp://lattes.cnpq.br/0345972428103987Loiola, Rafael Gomes2016-08-10T10:40:42Z2016-05-312016-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLOIOLA, Rafael Gomes. PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP.. 2016. 121 f. Dissertação (Mestrado em Engenharia) - Pontifícia Universidade Católica de Goiás, GOIÂNIA, 2016.http://localhost:8080/tede/handle/tede/2486porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)instname:Pontifícia Universidade Católica de Goiás (PUC-GO)instacron:PUC_GO2024-03-07T19:32:08Zoai:ambar:tede/2486Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucgoias.edu.br:8080/http://tede2.pucgoias.edu.br:8080/oai/requesttede@pucgoias.edu.br||tede@pucgoias.edu.bropendoar:65932024-03-07T19:32:08Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) - Pontifícia Universidade Católica de Goiás (PUC-GO)false |
dc.title.none.fl_str_mv |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
title |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
spellingShingle |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. Loiola, Rafael Gomes Séries temporais Box-Jenkins Redes Neurais MLP Indústria Previsão de demanda Temporal series Box-Jenkins Artificial Neural Networks MLP Industry Demand forecasting CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
title_short |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
title_full |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
title_fullStr |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
title_full_unstemmed |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
title_sort |
PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP. |
author |
Loiola, Rafael Gomes |
author_facet |
Loiola, Rafael Gomes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dantas, Maria José Pereira http://lattes.cnpq.br/5115002204148904 Carmo, Iran Martins do http://lattes.cnpq.br/2418951329099161 Vieira, Sibelius Lellis http://lattes.cnpq.br/0345972428103987 |
dc.contributor.author.fl_str_mv |
Loiola, Rafael Gomes |
dc.subject.por.fl_str_mv |
Séries temporais Box-Jenkins Redes Neurais MLP Indústria Previsão de demanda Temporal series Box-Jenkins Artificial Neural Networks MLP Industry Demand forecasting CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
topic |
Séries temporais Box-Jenkins Redes Neurais MLP Indústria Previsão de demanda Temporal series Box-Jenkins Artificial Neural Networks MLP Industry Demand forecasting CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO |
description |
A previsão de demanda é de essencial importância em ambientes organizacionais, de forma a servir como ferramenta de apoio a tomada de decisão durante o desenvolvimento do planejamento estratégico das empresas. Este trabalho teve como principal objetivo comparar modelos estatísticos e de inteligência artificial para problemas de previsão de demanda utilizando séries temporais por meio dos métodos de Box-Jenkins e rede neural artificial Multilayer Perceptron (MLP). Realizou-se o estudo para identificação e definição dos principais métodos de previsão de demanda. Posteriormente, aplicaram-se os métodos de previsão selecionados para a análise dos três produtos mais relevantes de uma indústria metal mecânica, no período de 2012 até 2014. Os quatro últimos períodos da série foram utilizados apenas para validação de desempenho de ambos os métodos propostos através das análises dos erros de previsão. Os softwares R, Matlab e SPSS apoiaram a aplicação, modelagem e análise dos dados. A partir dos modelos, realizou-se a previsão um passo a frente das vendas de uma indústria metal mecânica e posteriormente fez-se o comparativo de seus resultados através das medidas de erros referentes à raiz quadrada do erro quadrático médio, RMSE, e o erro percentual absoluto médio, MAPE, para identificar o modelo mais satisfatório e adequado para a predição. Os resultados indicaram que o desempenho das previsões utilizando o método estatístico de Box-Jenkins nos Produtos 1 e 3 foram superiores à aplicação dos modelos de rede neural MLP. Enquanto que para o Produto 2, o método de redes neurais alcançou melhores resultados. Nas análises estatísticas verificou-se que as séries apresentam padrões de comportamento referente à sazonalidade e oscilações, sendo possível observar que ambos os métodos apresentam resultados satisfatórios para cada característica de dados das séries temporais estudadas. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-10T10:40:42Z 2016-05-31 2016-03-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LOIOLA, Rafael Gomes. PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP.. 2016. 121 f. Dissertação (Mestrado em Engenharia) - Pontifícia Universidade Católica de Goiás, GOIÂNIA, 2016. http://localhost:8080/tede/handle/tede/2486 |
identifier_str_mv |
LOIOLA, Rafael Gomes. PREVISÃO DE SÉRIES TEMPORAIS EM UMA INDÚSTRIA METAL MECÂNICA UTILIZANDO MÉTODO CLÁSSICO DE BOX-JENKINS E REDES NEURAIS ARTIFICIAIS MLP.. 2016. 121 f. Dissertação (Mestrado em Engenharia) - Pontifícia Universidade Católica de Goiás, GOIÂNIA, 2016. |
url |
http://localhost:8080/tede/handle/tede/2486 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica de Goiás Engenharia BR PUC Goiás Engenharia de Produção e Sistemas |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica de Goiás Engenharia BR PUC Goiás Engenharia de Produção e Sistemas |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) instname:Pontifícia Universidade Católica de Goiás (PUC-GO) instacron:PUC_GO |
instname_str |
Pontifícia Universidade Católica de Goiás (PUC-GO) |
instacron_str |
PUC_GO |
institution |
PUC_GO |
reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) |
collection |
Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) - Pontifícia Universidade Católica de Goiás (PUC-GO) |
repository.mail.fl_str_mv |
tede@pucgoias.edu.br||tede@pucgoias.edu.br |
_version_ |
1809202258778259456 |