[en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW

Detalhes bibliográficos
Autor(a) principal: JOHANN HUMBERTO PENUELA MUNOZ
Data de Publicação: 2018
Tipo de documento: Outros
Idioma: eng
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@2
http://doi.org/10.17771/PUCRio.acad.35525
Resumo: [pt] Uma câmera de alta velocidade foi utilizada para visualizar o processo de quebra de gota em um misturador rotor - estator e através de um orifício em um duto em condições de escoamento turbulento. Dois casos especiais foram considerados: quebra de emulsões diluídas e quebra de gotículas de óleo individuais. Dois óleos minerais de viscosidade moderada foram dispersos em duas fases continuas diferentes, água da torneira e uma fase contínua formada por uma mistura de água do mar padrão e o surfactante aniônico STEOL CS-330 (Stepan Company). No caso de quebra no misturador rotor - estator, dois mecanismos foram identificados. Uma fragmentação inicial é causada pela combinação do vórtice (gerado pelo movimento circular do rotor) e a região de jato emergente dos furos do estator. O segundo mecanismo é uma quebra mecânica causada pelas altas taxas de cisalhamento que as gotas sofrem na abertura entre o rotor e o estator. No caso de quebra através do orifício, foi mostrado que a ruptura das gotículas ocorre somente a jusante da restrição, após percorrida certa distancia a partir da borda do orifício. Nesse comprimento de quebra, o gradiente radial de velocidade axial no escoamento é suficientemente grande para superar as tensões resistivas (exercidas pelas gotículas) e produzir a ruptura da gota. Esses resultados estão em concordância com as observações previas feitas por Galinat et al. (2005) para o caso de quebra de gota através de uma placa de orificio. No entanto, a partir das observações feitas neste trabalho, foi possível concluir que o comprimento do orifício não influencia os mecanismos de quebra. Também, a visualização permitiu analisar a influencia relativa da tensão interfacial e da viscosidade da fase dispersa para os dois casos considerados. Dados experimentais do tamanho de gota máximo estável foram obtidos para o caso de quebra de gota de emulsões de óleo em água diluídas nos dois casos estudados. A análise dos dados revelou que os tamanhos de gota máximos estáveis encontravam-se dentro da sub-faixa inercial, caracterizada exclusivamente pela taxa de dissipação de energia por unidade de massa, Épsilon. Um modelo mecanístico linear para a sub-faixa inercial, baseado na teoria de turbulência isotrópica de Kolmogorov, foi desenvolvido para ajudar na interpretação dos dados e suprir uma base para correlação. O modelo foi ajustado aos dados experimentais utilizando uma ferramenta de otimização não linear baseada no código GRG2 (Generalized Reduced Gradient), e sua precisão calculada a partir da raiz quadrada media das diferenças entre os dados experimentais e os previstos. Boas previsões foram obtidas para o rompimento no misturador, no entanto, este não foi o caso da quebra através do orifício. A baixa precisão relativa do modelo utilizado para correlacionar a quebra através do orifício reside na falta de consideração da escala de tempo requerida para a ruptura. Além disso, uma regressão linear baseada em um modelo Power Law mostrou que os efeitos interfaciais dominam o processo de quebra de gota na restrição.
id PUC_RIO-1_00ce7358c1b6ba3d2a47d6701b7c753d
oai_identifier_str oai:MAXWELL.puc-rio.br:35525
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW [pt] ANÁLISE DO FENÔMENO DE QUEBRA DE GOTA DE EMULSÕES DE ÓLEO EM AGUA DILUÍDAS EM ESCOAMENTO TURBULENTO [pt] VISUALIZACAO[pt] ESCOAMENTO TURBULENTO[pt] QUEBRA DE GOTAS[pt] EMULSAO[en] VISUALIZATION[en] TURBULENT FLOW[en] DROP BREAKUP[en] EMULSION[pt] Uma câmera de alta velocidade foi utilizada para visualizar o processo de quebra de gota em um misturador rotor - estator e através de um orifício em um duto em condições de escoamento turbulento. Dois casos especiais foram considerados: quebra de emulsões diluídas e quebra de gotículas de óleo individuais. Dois óleos minerais de viscosidade moderada foram dispersos em duas fases continuas diferentes, água da torneira e uma fase contínua formada por uma mistura de água do mar padrão e o surfactante aniônico STEOL CS-330 (Stepan Company). No caso de quebra no misturador rotor - estator, dois mecanismos foram identificados. Uma fragmentação inicial é causada pela combinação do vórtice (gerado pelo movimento circular do rotor) e a região de jato emergente dos furos do estator. O segundo mecanismo é uma quebra mecânica causada pelas altas taxas de cisalhamento que as gotas sofrem na abertura entre o rotor e o estator. No caso de quebra através do orifício, foi mostrado que a ruptura das gotículas ocorre somente a jusante da restrição, após percorrida certa distancia a partir da borda do orifício. Nesse comprimento de quebra, o gradiente radial de velocidade axial no escoamento é suficientemente grande para superar as tensões resistivas (exercidas pelas gotículas) e produzir a ruptura da gota. Esses resultados estão em concordância com as observações previas feitas por Galinat et al. (2005) para o caso de quebra de gota através de uma placa de orificio. No entanto, a partir das observações feitas neste trabalho, foi possível concluir que o comprimento do orifício não influencia os mecanismos de quebra. Também, a visualização permitiu analisar a influencia relativa da tensão interfacial e da viscosidade da fase dispersa para os dois casos considerados. Dados experimentais do tamanho de gota máximo estável foram obtidos para o caso de quebra de gota de emulsões de óleo em água diluídas nos dois casos estudados. A análise dos dados revelou que os tamanhos de gota máximos estáveis encontravam-se dentro da sub-faixa inercial, caracterizada exclusivamente pela taxa de dissipação de energia por unidade de massa, Épsilon. Um modelo mecanístico linear para a sub-faixa inercial, baseado na teoria de turbulência isotrópica de Kolmogorov, foi desenvolvido para ajudar na interpretação dos dados e suprir uma base para correlação. O modelo foi ajustado aos dados experimentais utilizando uma ferramenta de otimização não linear baseada no código GRG2 (Generalized Reduced Gradient), e sua precisão calculada a partir da raiz quadrada media das diferenças entre os dados experimentais e os previstos. Boas previsões foram obtidas para o rompimento no misturador, no entanto, este não foi o caso da quebra através do orifício. A baixa precisão relativa do modelo utilizado para correlacionar a quebra através do orifício reside na falta de consideração da escala de tempo requerida para a ruptura. Além disso, uma regressão linear baseada em um modelo Power Law mostrou que os efeitos interfaciais dominam o processo de quebra de gota na restrição.[en] A high-speed camera has been used to visualize the drop breakup process at turbulent conditions in a rotor - stator mixer and through an orifice in a pipe. Two special cases were considered: the breakup of diluted emulsions and the breakup of single oil droplets. Two mineral oils of moderate viscosity were dispersed in two different continuous phases, tap water and a continuous phase formed by a mixture of substitute ocean water and the anionic surfactant STEOL CS-330 (Stepan Company). For the case of breakup in the rotor - stator mixer, two mechanisms were identified. An initial fragmentation is caused by the combination of the vortex (generated by the circular motion of the rotor) and the jet zone emerging from the stator holes. The second mechanism is a mechanical breakup caused by the high shear stresses that droplets suffer in the rotor - stator gap. In the case of breakup through an orifice in a pipe, it was shown that breakage only occurs downstream of the restriction and takes place at a certain distance from the edge of the orifice. At this breakup length, the radial velocity gradient in the flow is large enough to overcome the resistance stresses (exerted by the droplet) and produce the rupture of the droplet. These results were in agreement with previous observations made Galinat et al. (2005) for the case of drop breakup through an orifice plate. However, from the observations made in this work, it was possible to conclude that the orifice length does not influence the breakup mechanisms. In addition, visualization has allowed to analyze the relative influence of interfacial tension and dispersed phase viscosity for both cases. Experimental values for the maximum stable drop diameter were obtained for the breakup of diluted oil-in-water emulsions in both studied cases. Analysis of the data revealed that maximum stable drop sizes were in the inertial sub range, characterized exclusively by the energy dissipation rate per unit mass, Epsilon. A linear mechanistic model for the inertial sub-range, based in Kolmogorov s theory of isotropic turbulence, was developed to aid in data interpretation and to provide a basis for correlation. The model was adjusted to experimental data using a nonlinear optimization tool based in the generalized reduced gradient code (GRG2), and its precision was calculated from the root mean squared difference between experimental and predicted data. Good predictions were obtained for the breakup in the mixer; however, this was not the case for the breakup through the orifice. The relative low precision of the model used to correlate the breakup through the restriction lied in the lack of consideration of the time scale required for the breakup. In addition, a linear curve fitting based in a power law model, showed that interfacial effects drive the breakup process in the restriction.MAXWELLMARCIO DA SILVEIRA CARVALHOJOHANN HUMBERTO PENUELA MUNOZ2018-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@2http://doi.org/10.17771/PUCRio.acad.35525engreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2018-11-08T00:00:00Zoai:MAXWELL.puc-rio.br:35525Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-11-08T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
[pt] ANÁLISE DO FENÔMENO DE QUEBRA DE GOTA DE EMULSÕES DE ÓLEO EM AGUA DILUÍDAS EM ESCOAMENTO TURBULENTO
title [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
spellingShingle [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
JOHANN HUMBERTO PENUELA MUNOZ
[pt] VISUALIZACAO
[pt] ESCOAMENTO TURBULENTO
[pt] QUEBRA DE GOTAS
[pt] EMULSAO
[en] VISUALIZATION
[en] TURBULENT FLOW
[en] DROP BREAKUP
[en] EMULSION
title_short [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
title_full [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
title_fullStr [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
title_full_unstemmed [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
title_sort [en] ANALYSIS OF DROP BREAKUP PHENOMENON OF DILUTED OIL IN WATER EMULSIONS IN TURBULENT FLOW
author JOHANN HUMBERTO PENUELA MUNOZ
author_facet JOHANN HUMBERTO PENUELA MUNOZ
author_role author
dc.contributor.none.fl_str_mv MARCIO DA SILVEIRA CARVALHO
dc.contributor.author.fl_str_mv JOHANN HUMBERTO PENUELA MUNOZ
dc.subject.por.fl_str_mv [pt] VISUALIZACAO
[pt] ESCOAMENTO TURBULENTO
[pt] QUEBRA DE GOTAS
[pt] EMULSAO
[en] VISUALIZATION
[en] TURBULENT FLOW
[en] DROP BREAKUP
[en] EMULSION
topic [pt] VISUALIZACAO
[pt] ESCOAMENTO TURBULENTO
[pt] QUEBRA DE GOTAS
[pt] EMULSAO
[en] VISUALIZATION
[en] TURBULENT FLOW
[en] DROP BREAKUP
[en] EMULSION
description [pt] Uma câmera de alta velocidade foi utilizada para visualizar o processo de quebra de gota em um misturador rotor - estator e através de um orifício em um duto em condições de escoamento turbulento. Dois casos especiais foram considerados: quebra de emulsões diluídas e quebra de gotículas de óleo individuais. Dois óleos minerais de viscosidade moderada foram dispersos em duas fases continuas diferentes, água da torneira e uma fase contínua formada por uma mistura de água do mar padrão e o surfactante aniônico STEOL CS-330 (Stepan Company). No caso de quebra no misturador rotor - estator, dois mecanismos foram identificados. Uma fragmentação inicial é causada pela combinação do vórtice (gerado pelo movimento circular do rotor) e a região de jato emergente dos furos do estator. O segundo mecanismo é uma quebra mecânica causada pelas altas taxas de cisalhamento que as gotas sofrem na abertura entre o rotor e o estator. No caso de quebra através do orifício, foi mostrado que a ruptura das gotículas ocorre somente a jusante da restrição, após percorrida certa distancia a partir da borda do orifício. Nesse comprimento de quebra, o gradiente radial de velocidade axial no escoamento é suficientemente grande para superar as tensões resistivas (exercidas pelas gotículas) e produzir a ruptura da gota. Esses resultados estão em concordância com as observações previas feitas por Galinat et al. (2005) para o caso de quebra de gota através de uma placa de orificio. No entanto, a partir das observações feitas neste trabalho, foi possível concluir que o comprimento do orifício não influencia os mecanismos de quebra. Também, a visualização permitiu analisar a influencia relativa da tensão interfacial e da viscosidade da fase dispersa para os dois casos considerados. Dados experimentais do tamanho de gota máximo estável foram obtidos para o caso de quebra de gota de emulsões de óleo em água diluídas nos dois casos estudados. A análise dos dados revelou que os tamanhos de gota máximos estáveis encontravam-se dentro da sub-faixa inercial, caracterizada exclusivamente pela taxa de dissipação de energia por unidade de massa, Épsilon. Um modelo mecanístico linear para a sub-faixa inercial, baseado na teoria de turbulência isotrópica de Kolmogorov, foi desenvolvido para ajudar na interpretação dos dados e suprir uma base para correlação. O modelo foi ajustado aos dados experimentais utilizando uma ferramenta de otimização não linear baseada no código GRG2 (Generalized Reduced Gradient), e sua precisão calculada a partir da raiz quadrada media das diferenças entre os dados experimentais e os previstos. Boas previsões foram obtidas para o rompimento no misturador, no entanto, este não foi o caso da quebra através do orifício. A baixa precisão relativa do modelo utilizado para correlacionar a quebra através do orifício reside na falta de consideração da escala de tempo requerida para a ruptura. Além disso, uma regressão linear baseada em um modelo Power Law mostrou que os efeitos interfaciais dominam o processo de quebra de gota na restrição.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@2
http://doi.org/10.17771/PUCRio.acad.35525
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35525@2
http://doi.org/10.17771/PUCRio.acad.35525
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822611514818560