[pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS

Detalhes bibliográficos
Autor(a) principal: SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES
Data de Publicação: 2021
Tipo de documento: Outros
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@2
http://doi.org/10.17771/PUCRio.acad.55213
Resumo: [pt] Os avanços nas tecnologias de obtenção de dados multi-ômicos têm disponibilizado diferentes níveis de informação molecular que aumentam progressivamente em volume e variedade. Neste estudo, propõem-se uma metodologia de integração de dados clínicos e multi-ômicos, com o objetivo de identificar subtipos de câncer por agrupamento fuzzy, representando assim as gradações entre os diferentes perfis moleculares. Uma melhor caracterização de tumores em subtipos moleculares pode contribuir para uma medicina mais personalizada e assertiva. Os conjuntos de dados ômicos a serem integrados são definidos utilizando um classificador com classe-alvo definida por resultados da literatura. Na sequência, é realizado o pré-processamento dos conjuntos de dados para reduzir a alta dimensionalidade. Os dados selecionados são integrados e em seguida agrupados. Optou-se pelo algoritmo fuzzy C-means pela sua capacidade de considerar a possibilidade dos pacientes terem características de diferentes grupos, o que não é possível com métodos clássicos de agrupamento. Como estudo de caso, utilizou-se dados de câncer colorretal (CCR). O CCR tem a quarta maior incidência na população mundial e a terceira maior no Brasil. Foram extraídos dados de metilação, expressão de miRNA e mRNA do portal do projeto The Cancer Genome Atlas (TCGA). Observou-se que a adição dos dados de expressão de miRNA e metilação a um classificador de expressão de mRNA da literatura aumentou a acurácia deste em 5 pontos percentuais. Assim, foram usados dados de metilação, expressão de miRNA e mRNA neste trabalho. Os atributos de cada conjunto de dados foram selecionados, obtendo-se redução significativa do número de atributos. A identificação dos grupos foi realizada com o algoritmo fuzzy C-means. A variação dos hiperparâmetros deste algoritmo, número de grupos e parâmetro de fuzzificação, permitiu a escolha da combinação de melhor desempenho. A escolha da melhor configuração considerou o efeito da variação dos parâmetros nas características biológicas, em especial na sobrevida global dos pacientes. Observou-se que o agrupamento gerado permitiu identificar que as amostras consideradas não agrupadas têm características biológicas compartilhadas entre grupos de diferentes prognósticos. Os resultados obtidos com a combinação de dados clínicos e ômicos mostraram-se promissores para melhor predizer o fenótipo.
id PUC_RIO-1_3f34dfe9ce2f41dd78d921fb7bcd304a
oai_identifier_str oai:MAXWELL.puc-rio.br:55213
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS [en] FUZZY CLUSTERING APPLIED TO MULTI-OMICS DATA [pt] SELECAO DE ATRIBUTOS[pt] AGRUPAMENTO FUZZY[pt] INTEGRACAO DE DADOS MULTI-OMICOS[en] FEATURE SELECTION[en] FUZZY CLUSTERING[en] MULTI-OMIC DATA INTEGRATION[pt] Os avanços nas tecnologias de obtenção de dados multi-ômicos têm disponibilizado diferentes níveis de informação molecular que aumentam progressivamente em volume e variedade. Neste estudo, propõem-se uma metodologia de integração de dados clínicos e multi-ômicos, com o objetivo de identificar subtipos de câncer por agrupamento fuzzy, representando assim as gradações entre os diferentes perfis moleculares. Uma melhor caracterização de tumores em subtipos moleculares pode contribuir para uma medicina mais personalizada e assertiva. Os conjuntos de dados ômicos a serem integrados são definidos utilizando um classificador com classe-alvo definida por resultados da literatura. Na sequência, é realizado o pré-processamento dos conjuntos de dados para reduzir a alta dimensionalidade. Os dados selecionados são integrados e em seguida agrupados. Optou-se pelo algoritmo fuzzy C-means pela sua capacidade de considerar a possibilidade dos pacientes terem características de diferentes grupos, o que não é possível com métodos clássicos de agrupamento. Como estudo de caso, utilizou-se dados de câncer colorretal (CCR). O CCR tem a quarta maior incidência na população mundial e a terceira maior no Brasil. Foram extraídos dados de metilação, expressão de miRNA e mRNA do portal do projeto The Cancer Genome Atlas (TCGA). Observou-se que a adição dos dados de expressão de miRNA e metilação a um classificador de expressão de mRNA da literatura aumentou a acurácia deste em 5 pontos percentuais. Assim, foram usados dados de metilação, expressão de miRNA e mRNA neste trabalho. Os atributos de cada conjunto de dados foram selecionados, obtendo-se redução significativa do número de atributos. A identificação dos grupos foi realizada com o algoritmo fuzzy C-means. A variação dos hiperparâmetros deste algoritmo, número de grupos e parâmetro de fuzzificação, permitiu a escolha da combinação de melhor desempenho. A escolha da melhor configuração considerou o efeito da variação dos parâmetros nas características biológicas, em especial na sobrevida global dos pacientes. Observou-se que o agrupamento gerado permitiu identificar que as amostras consideradas não agrupadas têm características biológicas compartilhadas entre grupos de diferentes prognósticos. Os resultados obtidos com a combinação de dados clínicos e ômicos mostraram-se promissores para melhor predizer o fenótipo.[en] The advances in technologies for obtaining multi-omic data provide different levels of molecular information that progressively increase in volume and variety. This study proposes a methodology for integrating clinical and multiomic data, which aim is the identification of cancer subtypes using fuzzy clustering algorithm, representing the different degrees between molecular profiles. A better characterization of tumors in molecular subtypes can contribute to a more personalized and assertive medicine. A classifier that uses a target class from literature results indicates which omic data sets should be integrated. Next, data sets are pre-processed to reduce high dimensionality. The selected data is integrated and then clustered. The fuzzy C-means algorithm was chosen due to its ability to consider the shared patients characteristics between different groups. As a case study, colorectal cancer (CRC) data were used. CCR has the fourth highest incidence in the world population and the third highest in Brazil. Methylation, miRNA and mRNA expression data were extracted from The Cancer Genome Atlas (TCGA) project portal. It was observed that the addition of miRNA expression and methylation data to a literature mRNA expression classifier increased its accuracy by 5 percentage points. Therefore, methylation, miRNA and mRNA expression data were used in this work. The attributes of each data set were pre-selected, obtaining a significant reduction in the number of attributes. Groups were identified using the fuzzy C-means algorithm. The variation of the hyperparameters of this algorithm, number of groups and membership degree, indicated the best performance combination. This choice considered the effect of parameters variation on biological characteristics, especially on the overall survival of patients. Clusters showed that patients considered not grouped had biological characteristics shared between groups of different prognoses. The combination of clinical and omic data to better predict the phenotype revealed promissing results.MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOSARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES2021-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@2http://doi.org/10.17771/PUCRio.acad.55213porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-17T00:00:00Zoai:MAXWELL.puc-rio.br:55213Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-17T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
[en] FUZZY CLUSTERING APPLIED TO MULTI-OMICS DATA
title [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
spellingShingle [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES
[pt] SELECAO DE ATRIBUTOS
[pt] AGRUPAMENTO FUZZY
[pt] INTEGRACAO DE DADOS MULTI-OMICOS
[en] FEATURE SELECTION
[en] FUZZY CLUSTERING
[en] MULTI-OMIC DATA INTEGRATION
title_short [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
title_full [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
title_fullStr [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
title_full_unstemmed [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
title_sort [pt] AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS
author SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES
author_facet SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES
author_role author
dc.contributor.none.fl_str_mv MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARLEY MARIA BERNARDES REBUZZI VELLASCO
dc.contributor.author.fl_str_mv SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES
dc.subject.por.fl_str_mv [pt] SELECAO DE ATRIBUTOS
[pt] AGRUPAMENTO FUZZY
[pt] INTEGRACAO DE DADOS MULTI-OMICOS
[en] FEATURE SELECTION
[en] FUZZY CLUSTERING
[en] MULTI-OMIC DATA INTEGRATION
topic [pt] SELECAO DE ATRIBUTOS
[pt] AGRUPAMENTO FUZZY
[pt] INTEGRACAO DE DADOS MULTI-OMICOS
[en] FEATURE SELECTION
[en] FUZZY CLUSTERING
[en] MULTI-OMIC DATA INTEGRATION
description [pt] Os avanços nas tecnologias de obtenção de dados multi-ômicos têm disponibilizado diferentes níveis de informação molecular que aumentam progressivamente em volume e variedade. Neste estudo, propõem-se uma metodologia de integração de dados clínicos e multi-ômicos, com o objetivo de identificar subtipos de câncer por agrupamento fuzzy, representando assim as gradações entre os diferentes perfis moleculares. Uma melhor caracterização de tumores em subtipos moleculares pode contribuir para uma medicina mais personalizada e assertiva. Os conjuntos de dados ômicos a serem integrados são definidos utilizando um classificador com classe-alvo definida por resultados da literatura. Na sequência, é realizado o pré-processamento dos conjuntos de dados para reduzir a alta dimensionalidade. Os dados selecionados são integrados e em seguida agrupados. Optou-se pelo algoritmo fuzzy C-means pela sua capacidade de considerar a possibilidade dos pacientes terem características de diferentes grupos, o que não é possível com métodos clássicos de agrupamento. Como estudo de caso, utilizou-se dados de câncer colorretal (CCR). O CCR tem a quarta maior incidência na população mundial e a terceira maior no Brasil. Foram extraídos dados de metilação, expressão de miRNA e mRNA do portal do projeto The Cancer Genome Atlas (TCGA). Observou-se que a adição dos dados de expressão de miRNA e metilação a um classificador de expressão de mRNA da literatura aumentou a acurácia deste em 5 pontos percentuais. Assim, foram usados dados de metilação, expressão de miRNA e mRNA neste trabalho. Os atributos de cada conjunto de dados foram selecionados, obtendo-se redução significativa do número de atributos. A identificação dos grupos foi realizada com o algoritmo fuzzy C-means. A variação dos hiperparâmetros deste algoritmo, número de grupos e parâmetro de fuzzificação, permitiu a escolha da combinação de melhor desempenho. A escolha da melhor configuração considerou o efeito da variação dos parâmetros nas características biológicas, em especial na sobrevida global dos pacientes. Observou-se que o agrupamento gerado permitiu identificar que as amostras consideradas não agrupadas têm características biológicas compartilhadas entre grupos de diferentes prognósticos. Os resultados obtidos com a combinação de dados clínicos e ômicos mostraram-se promissores para melhor predizer o fenótipo.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@2
http://doi.org/10.17771/PUCRio.acad.55213
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55213@2
http://doi.org/10.17771/PUCRio.acad.55213
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822631798472704