[en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS

Detalhes bibliográficos
Autor(a) principal: CLEOMAR PEREIRA DA SILVA
Data de Publicação: 2015
Tipo de documento: Outros
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@2
http://doi.org/10.17771/PUCRio.acad.24129
Resumo: [pt] A Programação Genética permite que computadores resolvam problemas automaticamente, sem que eles tenham sido programados para tal. Utilizando a inspiração no princípio da seleção natural de Darwin, uma população de programas, ou indivíduos, é mantida, modificada baseada em variação genética, e avaliada de acordo com uma função de aptidão (fitness). A programação genética tem sido usada com sucesso por uma série de aplicações como projeto automático, reconhecimento de padrões, controle robótico, mineração de dados e análise de imagens. Porém, a avaliação da gigantesca quantidade de indivíduos gerados requer excessiva quantidade de computação, levando a um tempo de execução inviável para problemas grandes. Este trabalho explora o alto poder computacional de unidades de processamento gráfico, ou GPUs, para acelerar a programação genética e permitir a geração automática de programas para grandes problemas. Propomos duas novas metodologias para se explorar a GPU em programação genética: compilação em linguagem intermediária e a criação de indivíduos em código de máquina. Estas metodologias apresentam vantagens em relação às metodologias tradicionais usadas na literatura. A utilização de linguagem intermediária reduz etapas de compilação e trabalha com instruções que estão bem documentadas. A criação de indivíduos em código de máquina não possui nenhuma etapa de compilação, mas requer engenharia reversa das instruções que não estão documentadas neste nível. Nossas metodologias são baseadas em programação genética linear e inspiradas em computação quântica. O uso de computação quântica permite uma convergência rápida, capacidade de busca global e inclusão da história passada dos indivíduos. As metodologias propostas foram comparadas com as metodologias existentes e apresentaram ganhos consideráveis de desempenho. Foi observado um desempenho máximo de até 2,74 trilhões de GPops (operações de programação genética por segundo) para o benchmark Multiplexador de 20 bits e foi possível estender a programação genética para problemas que apresentam bases de dados de até 7 milhões de amostras.
id PUC_RIO-1_58792dfe6eb4fec5bd33b79b16fd7d5d
oai_identifier_str oai:MAXWELL.puc-rio.br:24129
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS [pt] PROGRAMAÇÃO GENÉTICA MACIÇAMENTE PARALELA EM GPUS [pt] PROGRAMACAO GENETICA[pt] CODIGO DE MAQUINA[pt] GPUS[pt] INSPIRACAO QUANTICA[en] GENETIC PROGRAMMING[en] QUANTUM-INSPIRED[pt] A Programação Genética permite que computadores resolvam problemas automaticamente, sem que eles tenham sido programados para tal. Utilizando a inspiração no princípio da seleção natural de Darwin, uma população de programas, ou indivíduos, é mantida, modificada baseada em variação genética, e avaliada de acordo com uma função de aptidão (fitness). A programação genética tem sido usada com sucesso por uma série de aplicações como projeto automático, reconhecimento de padrões, controle robótico, mineração de dados e análise de imagens. Porém, a avaliação da gigantesca quantidade de indivíduos gerados requer excessiva quantidade de computação, levando a um tempo de execução inviável para problemas grandes. Este trabalho explora o alto poder computacional de unidades de processamento gráfico, ou GPUs, para acelerar a programação genética e permitir a geração automática de programas para grandes problemas. Propomos duas novas metodologias para se explorar a GPU em programação genética: compilação em linguagem intermediária e a criação de indivíduos em código de máquina. Estas metodologias apresentam vantagens em relação às metodologias tradicionais usadas na literatura. A utilização de linguagem intermediária reduz etapas de compilação e trabalha com instruções que estão bem documentadas. A criação de indivíduos em código de máquina não possui nenhuma etapa de compilação, mas requer engenharia reversa das instruções que não estão documentadas neste nível. Nossas metodologias são baseadas em programação genética linear e inspiradas em computação quântica. O uso de computação quântica permite uma convergência rápida, capacidade de busca global e inclusão da história passada dos indivíduos. As metodologias propostas foram comparadas com as metodologias existentes e apresentaram ganhos consideráveis de desempenho. Foi observado um desempenho máximo de até 2,74 trilhões de GPops (operações de programação genética por segundo) para o benchmark Multiplexador de 20 bits e foi possível estender a programação genética para problemas que apresentam bases de dados de até 7 milhões de amostras.[en] Genetic Programming enables computers to solve problems automatically, without being programmed to it. Using the inspiration in the Darwin s Principle of natural selection, a population of programs or individuals is maintained, modified based on genetic variation, and evaluated according to a fitness function. Genetic programming has been successfully applied to many different applications such as automatic design, pattern recognition, robotic control, data mining and image analysis. However, the evaluation of the huge amount of individuals requires excessive computational demands, leading to extremely long computational times for large size problems. This work exploits the high computational power of graphics processing units, or GPUs, to accelerate genetic programming and to enable the automatic generation of programs for large problems. We propose two new methodologies to exploit the power of the GPU in genetic programming: intermediate language compilation and individuals creation in machine language. These methodologies have advantages over traditional methods used in the literature. The use of an intermediate language reduces the compilation steps, and works with instructions that are well-documented. The individuals creation in machine language has no compilation step, but requires reverse engineering of the instructions that are not documented at this level. Our methodologies are based on linear genetic programming and are inspired by quantum computing. The use of quantum computing allows rapid convergence, global search capability and inclusion of individuals past history. The proposed methodologies were compared against existing methodologies and they showed considerable performance gains. It was observed a maximum performance of 2,74 trillion GPops (genetic programming operations per second) for the 20-bit Multiplexer benchmark, and it was possible to extend genetic programming for problems that have databases with up to 7 million samples.MAXWELLMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOCLEOMAR PEREIRA DA SILVA2015-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@2http://doi.org/10.17771/PUCRio.acad.24129porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-07-07T00:00:00Zoai:MAXWELL.puc-rio.br:24129Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-07-07T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
[pt] PROGRAMAÇÃO GENÉTICA MACIÇAMENTE PARALELA EM GPUS
title [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
spellingShingle [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
CLEOMAR PEREIRA DA SILVA
[pt] PROGRAMACAO GENETICA
[pt] CODIGO DE MAQUINA
[pt] GPUS
[pt] INSPIRACAO QUANTICA
[en] GENETIC PROGRAMMING
[en] QUANTUM-INSPIRED
title_short [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
title_full [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
title_fullStr [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
title_full_unstemmed [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
title_sort [en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS
author CLEOMAR PEREIRA DA SILVA
author_facet CLEOMAR PEREIRA DA SILVA
author_role author
dc.contributor.none.fl_str_mv MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
dc.contributor.author.fl_str_mv CLEOMAR PEREIRA DA SILVA
dc.subject.por.fl_str_mv [pt] PROGRAMACAO GENETICA
[pt] CODIGO DE MAQUINA
[pt] GPUS
[pt] INSPIRACAO QUANTICA
[en] GENETIC PROGRAMMING
[en] QUANTUM-INSPIRED
topic [pt] PROGRAMACAO GENETICA
[pt] CODIGO DE MAQUINA
[pt] GPUS
[pt] INSPIRACAO QUANTICA
[en] GENETIC PROGRAMMING
[en] QUANTUM-INSPIRED
description [pt] A Programação Genética permite que computadores resolvam problemas automaticamente, sem que eles tenham sido programados para tal. Utilizando a inspiração no princípio da seleção natural de Darwin, uma população de programas, ou indivíduos, é mantida, modificada baseada em variação genética, e avaliada de acordo com uma função de aptidão (fitness). A programação genética tem sido usada com sucesso por uma série de aplicações como projeto automático, reconhecimento de padrões, controle robótico, mineração de dados e análise de imagens. Porém, a avaliação da gigantesca quantidade de indivíduos gerados requer excessiva quantidade de computação, levando a um tempo de execução inviável para problemas grandes. Este trabalho explora o alto poder computacional de unidades de processamento gráfico, ou GPUs, para acelerar a programação genética e permitir a geração automática de programas para grandes problemas. Propomos duas novas metodologias para se explorar a GPU em programação genética: compilação em linguagem intermediária e a criação de indivíduos em código de máquina. Estas metodologias apresentam vantagens em relação às metodologias tradicionais usadas na literatura. A utilização de linguagem intermediária reduz etapas de compilação e trabalha com instruções que estão bem documentadas. A criação de indivíduos em código de máquina não possui nenhuma etapa de compilação, mas requer engenharia reversa das instruções que não estão documentadas neste nível. Nossas metodologias são baseadas em programação genética linear e inspiradas em computação quântica. O uso de computação quântica permite uma convergência rápida, capacidade de busca global e inclusão da história passada dos indivíduos. As metodologias propostas foram comparadas com as metodologias existentes e apresentaram ganhos consideráveis de desempenho. Foi observado um desempenho máximo de até 2,74 trilhões de GPops (operações de programação genética por segundo) para o benchmark Multiplexador de 20 bits e foi possível estender a programação genética para problemas que apresentam bases de dados de até 7 milhões de amostras.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@2
http://doi.org/10.17771/PUCRio.acad.24129
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24129@2
http://doi.org/10.17771/PUCRio.acad.24129
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822589827121152