[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Outros |
Idioma: | eng |
Título da fonte: | Repositório Institucional da PUC-RIO (Projeto Maxwell) |
Texto Completo: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@2 http://doi.org/10.17771/PUCRio.acad.51377 |
Resumo: | [pt] A estrutura dos mean-filed games foi desenvolvida com o intuito de estudar problemas com um infinito número de jogadores em algum tipo de competição, ao qual pode ser aplicado em diversos problemas. O estudo formalizado desses problemas começou, na comunidade matemática com Lasry and Lions, e mais ou menos na mesma época, porém independentemente, na comunidade de engenharia por P. Caines, Minyi Huang, and Roland Malhamé. Desde então a pesquisa nos mean-field games cresceu exponencialmente, e nesse trabalho apresentaremos regularidade para um caso de mean-field games utilizando tecnicas particulares. Nesse trabalho, estudamos time-dependent mean-field games no caso subquadrático, isto é, mean-field games, o qual é escrito como um sistema de duas equações, uma equação de Hamilton-Jacobi e uma equação do transporte ou uma equação de Fokker-Plank, em que o Hamiltoniano na equação de Hamilton-Jacobi possui um crescimento subquadratico. Começamos em assumir dez suposições, e então sob os mesmos deduzir regularidade Lipschitz para o sistema. |
id |
PUC_RIO-1_770ff410c0dbd02dc6ce14871e895c3b |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:51377 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
534 |
spelling |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES [pt] ESTIMATIVAS A PRIORI E JOGOS DE CAMPO MÉDIO [pt] SUPOSICOES[pt] REGULARIDADE LIPSCHITZ[pt] REGULARIDADE SOBOLEV[pt] REGULARIDADE PARA A EQUACAO DE FOKKER-PLANK[pt] REGULARIDADE PARA A EQUACAO DE HAMILTON-JACOBI[pt] ESTIMATIVAS DE PRIMEIRA E SEGUNDA ORDEM[en] ASSUMPTIONS[en] LIPSCHITZ REGULARITY[en] SOBOLEV REGULARITY[en] REGULARITY FOR THE FOKKER-PLANK EQUATION[en] REGULARITY FOR THE HAMILTON-JACOBI EQUATION[en] FIRST AND SECOND ORDER ESTIMATES[pt] A estrutura dos mean-filed games foi desenvolvida com o intuito de estudar problemas com um infinito número de jogadores em algum tipo de competição, ao qual pode ser aplicado em diversos problemas. O estudo formalizado desses problemas começou, na comunidade matemática com Lasry and Lions, e mais ou menos na mesma época, porém independentemente, na comunidade de engenharia por P. Caines, Minyi Huang, and Roland Malhamé. Desde então a pesquisa nos mean-field games cresceu exponencialmente, e nesse trabalho apresentaremos regularidade para um caso de mean-field games utilizando tecnicas particulares. Nesse trabalho, estudamos time-dependent mean-field games no caso subquadrático, isto é, mean-field games, o qual é escrito como um sistema de duas equações, uma equação de Hamilton-Jacobi e uma equação do transporte ou uma equação de Fokker-Plank, em que o Hamiltoniano na equação de Hamilton-Jacobi possui um crescimento subquadratico. Começamos em assumir dez suposições, e então sob os mesmos deduzir regularidade Lipschitz para o sistema.[en] The mean-field games framework was developed to study problems with an infinite number of rational players in competition, which could be applied in many problems. The formalized study of these problems has begun, in the mathematical community by Lasry and Lions, and beside them, but independently close to the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this work we present a regularity to a case of mean-field games using particulars techniques. In this work, we study time-dependent mean-field games in the subquadratic case, that is, mean-field games, which are written as a system of a Hamilton–Jacobi equation and a transport or Fokker–Planck equation, where The Hamiltonian presented on the Hamilton–Jacobi equation has a subquadratic growth. We begin by assuming ten assumptions, and then, under these assumptions derive Lipschitz regularity of the system.MAXWELLEDGARD ALMEIDA PIMENTELEDGARD ALMEIDA PIMENTELJOAO VITOR MEDEIROS DOMINGOS2021-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@2http://doi.org/10.17771/PUCRio.acad.51377engreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-01T00:00:00Zoai:MAXWELL.puc-rio.br:51377Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-01T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
dc.title.none.fl_str_mv |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES [pt] ESTIMATIVAS A PRIORI E JOGOS DE CAMPO MÉDIO |
title |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
spellingShingle |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES JOAO VITOR MEDEIROS DOMINGOS [pt] SUPOSICOES [pt] REGULARIDADE LIPSCHITZ [pt] REGULARIDADE SOBOLEV [pt] REGULARIDADE PARA A EQUACAO DE FOKKER-PLANK [pt] REGULARIDADE PARA A EQUACAO DE HAMILTON-JACOBI [pt] ESTIMATIVAS DE PRIMEIRA E SEGUNDA ORDEM [en] ASSUMPTIONS [en] LIPSCHITZ REGULARITY [en] SOBOLEV REGULARITY [en] REGULARITY FOR THE FOKKER-PLANK EQUATION [en] REGULARITY FOR THE HAMILTON-JACOBI EQUATION [en] FIRST AND SECOND ORDER ESTIMATES |
title_short |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
title_full |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
title_fullStr |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
title_full_unstemmed |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
title_sort |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES |
author |
JOAO VITOR MEDEIROS DOMINGOS |
author_facet |
JOAO VITOR MEDEIROS DOMINGOS |
author_role |
author |
dc.contributor.none.fl_str_mv |
EDGARD ALMEIDA PIMENTEL EDGARD ALMEIDA PIMENTEL |
dc.contributor.author.fl_str_mv |
JOAO VITOR MEDEIROS DOMINGOS |
dc.subject.por.fl_str_mv |
[pt] SUPOSICOES [pt] REGULARIDADE LIPSCHITZ [pt] REGULARIDADE SOBOLEV [pt] REGULARIDADE PARA A EQUACAO DE FOKKER-PLANK [pt] REGULARIDADE PARA A EQUACAO DE HAMILTON-JACOBI [pt] ESTIMATIVAS DE PRIMEIRA E SEGUNDA ORDEM [en] ASSUMPTIONS [en] LIPSCHITZ REGULARITY [en] SOBOLEV REGULARITY [en] REGULARITY FOR THE FOKKER-PLANK EQUATION [en] REGULARITY FOR THE HAMILTON-JACOBI EQUATION [en] FIRST AND SECOND ORDER ESTIMATES |
topic |
[pt] SUPOSICOES [pt] REGULARIDADE LIPSCHITZ [pt] REGULARIDADE SOBOLEV [pt] REGULARIDADE PARA A EQUACAO DE FOKKER-PLANK [pt] REGULARIDADE PARA A EQUACAO DE HAMILTON-JACOBI [pt] ESTIMATIVAS DE PRIMEIRA E SEGUNDA ORDEM [en] ASSUMPTIONS [en] LIPSCHITZ REGULARITY [en] SOBOLEV REGULARITY [en] REGULARITY FOR THE FOKKER-PLANK EQUATION [en] REGULARITY FOR THE HAMILTON-JACOBI EQUATION [en] FIRST AND SECOND ORDER ESTIMATES |
description |
[pt] A estrutura dos mean-filed games foi desenvolvida com o intuito de estudar problemas com um infinito número de jogadores em algum tipo de competição, ao qual pode ser aplicado em diversos problemas. O estudo formalizado desses problemas começou, na comunidade matemática com Lasry and Lions, e mais ou menos na mesma época, porém independentemente, na comunidade de engenharia por P. Caines, Minyi Huang, and Roland Malhamé. Desde então a pesquisa nos mean-field games cresceu exponencialmente, e nesse trabalho apresentaremos regularidade para um caso de mean-field games utilizando tecnicas particulares. Nesse trabalho, estudamos time-dependent mean-field games no caso subquadrático, isto é, mean-field games, o qual é escrito como um sistema de duas equações, uma equação de Hamilton-Jacobi e uma equação do transporte ou uma equação de Fokker-Plank, em que o Hamiltoniano na equação de Hamilton-Jacobi possui um crescimento subquadratico. Começamos em assumir dez suposições, e então sob os mesmos deduzir regularidade Lipschitz para o sistema. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@2 http://doi.org/10.17771/PUCRio.acad.51377 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51377@2 http://doi.org/10.17771/PUCRio.acad.51377 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MAXWELL |
publisher.none.fl_str_mv |
MAXWELL |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
repository.mail.fl_str_mv |
|
_version_ |
1814822626095267840 |