[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da PUC-RIO (Projeto Maxwell) |
Texto Completo: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=2 http://doi.org/10.17771/PUCRio.acad.9017 |
Resumo: | [pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de reconhecimento de caracteres, em particular de dígitos manuscritos. Nesta investigação foram utilizadas amostras reais de dígitos isolados e de códigos postais brasileiros relativos e vários escritores. O trabalho consiste de quatro partes principais: o estudo das metodologias de reconhecimento e da semântica e estrutura de representação de caracteres; o desenvolvimento das etapas de pré-processamento dos dígitos; o desenvolvimento das RNAs para o reconhecimento de dígitos manuscritos; e o estudo de casos. No estudo sobre a metodologia de reconhecimento de caracteres fez-se um levantamento preliminar das diversas aplicaões de sistemas OCR (Optical Character Recognition). Enfatizou-se a classificação dos diversos tipos de semânticas existentes de acordo com a aplicação específica, bem como a estrutura geral de um sistema OCR. O estudo também consistiu da análise e apresentação de modelos convencionais e de sistemas inteligentes na implementação da etapa de classificação dos sistemas OCR. O desenvolvimento do pré-processamento dos dígitos envolveu um extenso estudo bibliográfico de diversas metodologias para cada uma de suas etapas. Foram estudados os algoritmos mais empregados nas etapas de pré- processamento de um sistema. OCR: conversão de níveis de cinza para representação binária ( thresholding), filtragem, segmentação e normalização. A partir desse estudo, foram selecionados e desenvolvidos determinados tipos de algoritmos para o pré-processamento. No desenvolvimento de RNAs para o reconhecimento de dígitos manuscritos fez-se uma investigação de diversas metodologias, incluindo as arquiteturas e os algoritmos de aprendizado mais empregados. Neste estudo, constatou-se a predominância do uso do algoritmo de retropropagação do erro (BackPropagation) para o treinamento das redes nas aplicações de reconhecimento de caracteres manuscritos. As arquiteturas propostas neste trabalho foram escolhidas de acordo com dois tipos de aplicados de reconhecimento: reconhecimento de dígitos manuscritos isolados e reconhecimento automático de código postal. No estudo de casos, as RNAs foram modeladas para fazer o reconhecimento automático de código postal. Este estudo consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema OCR baseado em redes neurais. Foram feitos testes com dois tipos de sistemas de reconhecimento por redes neurais: redes totalmente conectadas e redes parcialmente. Para os dois casos foram utilizados amostras reais colhidas de 73 escritores. Os resultados obtidos com os dois tipos de redes foram comparados e comprovaram a superioridade das RNAs com arquitetura parcialmente conectada no reconhecimento de dígitos altamente ruidosos. Comparações também foram feitas com outras técnicas convencionais de reconhecimento, obtendo-se resultados, em muitos casos, superiores. |
id |
PUC_RIO-1_ac785512040db0bda460f9a6ac866a5a |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:9017 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
534 |
spelling |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS [pt] RECONHECIMENTO DE DÍGITOS MANUSCRITOS POR REDES NEURAIS [pt] REDE NEURAL[pt] MANUSCRITO[pt] RECONHECIMENTO[en] NEURAL NETWORKS[en] HANDWRITING[en] RECOGNITION[pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de reconhecimento de caracteres, em particular de dígitos manuscritos. Nesta investigação foram utilizadas amostras reais de dígitos isolados e de códigos postais brasileiros relativos e vários escritores. O trabalho consiste de quatro partes principais: o estudo das metodologias de reconhecimento e da semântica e estrutura de representação de caracteres; o desenvolvimento das etapas de pré-processamento dos dígitos; o desenvolvimento das RNAs para o reconhecimento de dígitos manuscritos; e o estudo de casos. No estudo sobre a metodologia de reconhecimento de caracteres fez-se um levantamento preliminar das diversas aplicaões de sistemas OCR (Optical Character Recognition). Enfatizou-se a classificação dos diversos tipos de semânticas existentes de acordo com a aplicação específica, bem como a estrutura geral de um sistema OCR. O estudo também consistiu da análise e apresentação de modelos convencionais e de sistemas inteligentes na implementação da etapa de classificação dos sistemas OCR. O desenvolvimento do pré-processamento dos dígitos envolveu um extenso estudo bibliográfico de diversas metodologias para cada uma de suas etapas. Foram estudados os algoritmos mais empregados nas etapas de pré- processamento de um sistema. OCR: conversão de níveis de cinza para representação binária ( thresholding), filtragem, segmentação e normalização. A partir desse estudo, foram selecionados e desenvolvidos determinados tipos de algoritmos para o pré-processamento. No desenvolvimento de RNAs para o reconhecimento de dígitos manuscritos fez-se uma investigação de diversas metodologias, incluindo as arquiteturas e os algoritmos de aprendizado mais empregados. Neste estudo, constatou-se a predominância do uso do algoritmo de retropropagação do erro (BackPropagation) para o treinamento das redes nas aplicações de reconhecimento de caracteres manuscritos. As arquiteturas propostas neste trabalho foram escolhidas de acordo com dois tipos de aplicados de reconhecimento: reconhecimento de dígitos manuscritos isolados e reconhecimento automático de código postal. No estudo de casos, as RNAs foram modeladas para fazer o reconhecimento automático de código postal. Este estudo consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema OCR baseado em redes neurais. Foram feitos testes com dois tipos de sistemas de reconhecimento por redes neurais: redes totalmente conectadas e redes parcialmente. Para os dois casos foram utilizados amostras reais colhidas de 73 escritores. Os resultados obtidos com os dois tipos de redes foram comparados e comprovaram a superioridade das RNAs com arquitetura parcialmente conectada no reconhecimento de dígitos altamente ruidosos. Comparações também foram feitas com outras técnicas convencionais de reconhecimento, obtendo-se resultados, em muitos casos, superiores. [en] This dissertation investigates the use of Artificial Neural Networks (ANNs) for character recognition, especially handwritten digits. Real samples of isolated and postal code digits were used from different writers. The dissertation covers four main part: the study of methodologies, semantics and structure on character recognition and its representation; the development of the digits preprocessing phases; the design of ANNs to handwritten digits recognition; and the case studies. The first part of this dissertation studies methodologies, semantics and structures used on character recognition. The result of this study is an overview of the major aplication in OCR (Optical Character Recognition). Different kinds of semantics and their structures were classified according to each specific application. Several conventional models and intelligent systems, used in the classification stage of OCR systems, had also been discussed. The development of the digits preprocessing involved the investigation of different methodologies related to each preprocessing phase. The most used algorithm for each preprocessing phase were considered: thresholding, smoothing, segmentation and normalization. According to this study, specific algorithms were selected and developed. In the design of ANNs for handwritten digits recognition, different methodologies had been investigated, including the architetures and the learning algorithms most used. This overview confirmed the predominance of BackPropagation as the training algorithm for the Neural Network in this application. The architetures proposed in this work had been selected according to two types of applications of character recognition: isolated handwritten digits recognition and postal address code recognition. The case studies consisted of the designing of an ANN to postal address code recognition. The case studies involved testing the system performance for two kinds of ANNs: fully connected networks and partially connected networks. In both cases, samples of 73 writers were used. The results were compared to each other, confirming the superiority of partially connected ANN in handling noisy digits. The ANN perfomance was also compared with the perfomance of other conventional techniques, achieving better results in many cases. MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARIA ANGELICA PEREIRA FREIXINHO2006-09-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=2http://doi.org/10.17771/PUCRio.acad.9017porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2018-10-10T00:00:00Zoai:MAXWELL.puc-rio.br:9017Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-10-10T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
dc.title.none.fl_str_mv |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS [pt] RECONHECIMENTO DE DÍGITOS MANUSCRITOS POR REDES NEURAIS |
title |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
spellingShingle |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS MARIA ANGELICA PEREIRA FREIXINHO [pt] REDE NEURAL [pt] MANUSCRITO [pt] RECONHECIMENTO [en] NEURAL NETWORKS [en] HANDWRITING [en] RECOGNITION |
title_short |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
title_full |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
title_fullStr |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
title_full_unstemmed |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
title_sort |
[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS |
author |
MARIA ANGELICA PEREIRA FREIXINHO |
author_facet |
MARIA ANGELICA PEREIRA FREIXINHO |
author_role |
author |
dc.contributor.none.fl_str_mv |
MARLEY MARIA BERNARDES REBUZZI VELLASCO MARLEY MARIA BERNARDES REBUZZI VELLASCO MARCO AURELIO CAVALCANTI PACHECO MARCO AURELIO CAVALCANTI PACHECO MARCO AURELIO CAVALCANTI PACHECO |
dc.contributor.author.fl_str_mv |
MARIA ANGELICA PEREIRA FREIXINHO |
dc.subject.por.fl_str_mv |
[pt] REDE NEURAL [pt] MANUSCRITO [pt] RECONHECIMENTO [en] NEURAL NETWORKS [en] HANDWRITING [en] RECOGNITION |
topic |
[pt] REDE NEURAL [pt] MANUSCRITO [pt] RECONHECIMENTO [en] NEURAL NETWORKS [en] HANDWRITING [en] RECOGNITION |
description |
[pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de reconhecimento de caracteres, em particular de dígitos manuscritos. Nesta investigação foram utilizadas amostras reais de dígitos isolados e de códigos postais brasileiros relativos e vários escritores. O trabalho consiste de quatro partes principais: o estudo das metodologias de reconhecimento e da semântica e estrutura de representação de caracteres; o desenvolvimento das etapas de pré-processamento dos dígitos; o desenvolvimento das RNAs para o reconhecimento de dígitos manuscritos; e o estudo de casos. No estudo sobre a metodologia de reconhecimento de caracteres fez-se um levantamento preliminar das diversas aplicaões de sistemas OCR (Optical Character Recognition). Enfatizou-se a classificação dos diversos tipos de semânticas existentes de acordo com a aplicação específica, bem como a estrutura geral de um sistema OCR. O estudo também consistiu da análise e apresentação de modelos convencionais e de sistemas inteligentes na implementação da etapa de classificação dos sistemas OCR. O desenvolvimento do pré-processamento dos dígitos envolveu um extenso estudo bibliográfico de diversas metodologias para cada uma de suas etapas. Foram estudados os algoritmos mais empregados nas etapas de pré- processamento de um sistema. OCR: conversão de níveis de cinza para representação binária ( thresholding), filtragem, segmentação e normalização. A partir desse estudo, foram selecionados e desenvolvidos determinados tipos de algoritmos para o pré-processamento. No desenvolvimento de RNAs para o reconhecimento de dígitos manuscritos fez-se uma investigação de diversas metodologias, incluindo as arquiteturas e os algoritmos de aprendizado mais empregados. Neste estudo, constatou-se a predominância do uso do algoritmo de retropropagação do erro (BackPropagation) para o treinamento das redes nas aplicações de reconhecimento de caracteres manuscritos. As arquiteturas propostas neste trabalho foram escolhidas de acordo com dois tipos de aplicados de reconhecimento: reconhecimento de dígitos manuscritos isolados e reconhecimento automático de código postal. No estudo de casos, as RNAs foram modeladas para fazer o reconhecimento automático de código postal. Este estudo consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema OCR baseado em redes neurais. Foram feitos testes com dois tipos de sistemas de reconhecimento por redes neurais: redes totalmente conectadas e redes parcialmente. Para os dois casos foram utilizados amostras reais colhidas de 73 escritores. Os resultados obtidos com os dois tipos de redes foram comparados e comprovaram a superioridade das RNAs com arquitetura parcialmente conectada no reconhecimento de dígitos altamente ruidosos. Comparações também foram feitas com outras técnicas convencionais de reconhecimento, obtendo-se resultados, em muitos casos, superiores. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=2 http://doi.org/10.17771/PUCRio.acad.9017 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9017&idi=2 http://doi.org/10.17771/PUCRio.acad.9017 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MAXWELL |
publisher.none.fl_str_mv |
MAXWELL |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
repository.mail.fl_str_mv |
|
_version_ |
1817789438832410624 |