[pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS

Detalhes bibliográficos
Autor(a) principal: ALEXANDRE STURMER WOLF
Data de Publicação: 2004
Tipo de documento: Outros
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@2
http://doi.org/10.17771/PUCRio.acad.4817
Resumo: [pt] O objetivo dessa dissertação é o desenvolvimento de um algoritmo para a análise automática de sinais eletrocardiográficos, baseado em Redes Neurais Artificiais. O sistema é dividido em vários sub- programas utilizados para extrair informações do registro eletrocardiográfico de pacientes, informando a existência de anormalidades a partir da comparação dos valores obtidos com os valores de normalidade disponíveis na literatura biomédica. O programa utiliza 4 segundos do sinal de eletrocardiograma para uma análise classificatória inicial, verificando a viabilidade da extração de informações. Sendo possível esta extração, são obtidos os ciclos cardíacos existentes nesse sinal, e deles são extraídas informações quantitativas dos componentes de suas ondas, que posteriormente serão comparadas com faixas de normalidade por meio de um conjunto de regras heurísticas, indicando assim a possível presença de alterações morfológicas do registro. Esse programa pode ser utilizado em comunidades carentes para orientar a necessidade de encaminhamento a um especialista, cuja presença é rara na maior parte dos postos de atendimento generalista. Também pode auxiliar ao médico especialista, indicando de forma objetiva as possíveis alterações do registro eletrocardiográfico. Os resultados obtidos podem ser considerados satisfatórios, sendo que os valores são compatíveis com a sua natureza, principalmente no que diz respeito aos problemas de baixa razão sinal/ruído existente nos sinais analisados. Para verificação dos resultados de localização dos pontos inicial e final de cada componente do ECG, uma das métricas utilizadas foi o MAPE, obtendo-se, 19,44 por cento para onda P,4,85 por cento para o complexo QRS, 8,93 por cento para o início da onda T e 7,76 por cento para o final da onda T. Outra métrica utilizada para comparar os resultados obtidos com outro artigo, foi a Média Aritmética/Desvio Padrão, onde se obteve mi=-0,8264 ms e sigma=3,7037 ms para o início da onda P, mi=-1,5082 ms e sigma=2,2890 ms para o fim da onda P, mi=-0,2104 ms e sigma=3,2486 ms para o início do complexo QRS, mi=-0,4309 ms e sigma=3,9542 ms para o fim do complexo QRS, mi=-0,1926 ms e sigma=5,7413 ms para o início da onda T, mi=-0,3346 ms e sigma=6,3991 ms para o fim da onda T.
id PUC_RIO-1_b5c05afa73cde273cdbcc00d07e6be16
oai_identifier_str oai:MAXWELL.puc-rio.br:4817
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS [en] AUTOMATIC ANALISYS OF ELECTROCARDIOGRAPHIC SIGNALS USING ARTIFICIAL NEURAL NETWORKS [pt] REDE NEURAL ARTIFICIAL[pt] ANALISE AUTOMATICO DE SINAIS[en] ARTIFICIAL NEURAL NETWORKS[en] AUTOMATIC SIGNAL ANALISYS[pt] O objetivo dessa dissertação é o desenvolvimento de um algoritmo para a análise automática de sinais eletrocardiográficos, baseado em Redes Neurais Artificiais. O sistema é dividido em vários sub- programas utilizados para extrair informações do registro eletrocardiográfico de pacientes, informando a existência de anormalidades a partir da comparação dos valores obtidos com os valores de normalidade disponíveis na literatura biomédica. O programa utiliza 4 segundos do sinal de eletrocardiograma para uma análise classificatória inicial, verificando a viabilidade da extração de informações. Sendo possível esta extração, são obtidos os ciclos cardíacos existentes nesse sinal, e deles são extraídas informações quantitativas dos componentes de suas ondas, que posteriormente serão comparadas com faixas de normalidade por meio de um conjunto de regras heurísticas, indicando assim a possível presença de alterações morfológicas do registro. Esse programa pode ser utilizado em comunidades carentes para orientar a necessidade de encaminhamento a um especialista, cuja presença é rara na maior parte dos postos de atendimento generalista. Também pode auxiliar ao médico especialista, indicando de forma objetiva as possíveis alterações do registro eletrocardiográfico. Os resultados obtidos podem ser considerados satisfatórios, sendo que os valores são compatíveis com a sua natureza, principalmente no que diz respeito aos problemas de baixa razão sinal/ruído existente nos sinais analisados. Para verificação dos resultados de localização dos pontos inicial e final de cada componente do ECG, uma das métricas utilizadas foi o MAPE, obtendo-se, 19,44 por cento para onda P,4,85 por cento para o complexo QRS, 8,93 por cento para o início da onda T e 7,76 por cento para o final da onda T. Outra métrica utilizada para comparar os resultados obtidos com outro artigo, foi a Média Aritmética/Desvio Padrão, onde se obteve mi=-0,8264 ms e sigma=3,7037 ms para o início da onda P, mi=-1,5082 ms e sigma=2,2890 ms para o fim da onda P, mi=-0,2104 ms e sigma=3,2486 ms para o início do complexo QRS, mi=-0,4309 ms e sigma=3,9542 ms para o fim do complexo QRS, mi=-0,1926 ms e sigma=5,7413 ms para o início da onda T, mi=-0,3346 ms e sigma=6,3991 ms para o fim da onda T.[en] The objective of this dissertation is implementing an algorithm for automatic analysis of electrocardiographic signals, using Artificial Neural Networks. The system is divided into several subprograms that extract relevant information about the cardiac signal measured from patients, and points out possible abnormalities by comparison with normal values found in biomedical bibliography. The algorithm uses 4 seconds of the electrocardiogram signal for an initial classification, verifying the feasibility of information extraction. If the extraction is possible, the separate cardiac cycles are collected from the signal and quantitative values for the various components are determined. Finally, these values are compared with the normal values, indicating alterations of wave morphology. This algorithm has a clear relevance in low-income communities, being useful for an initial classification of the patients, being then forwarded to a cardiologist when ECG abnormalities are identified. Another potential use is in helping the cardiologist to automatically determine accurate values from the electrocardiographic register. The results can by considered satistactory, because the values are being compatible with their nature, mainly due to problems of low signal-to-noise ratio in analysed signals. For verification of the results, one metric used was the MAPE, obtaining 19,44 percent for the P wave, 4,85 percent for the QRS complex, 8,93 percent for the begining of the T wave and 7,76 percent for the end of T wave. Another metric used for comparing results with another article, was the Arithmetic Mean/Standard Deviation, obtaining u=-0,8264 ms and ó=3,7037 ms for the onset of the P wave, u=-1,5082 ms and ó=2,2890 ms for the offset of P wave, u=-0,2104 ms and ó=3,2486 ms for the onset of the QRS complex, u=-0,4309 ms and ó=3,9542 ms for the offset of the QRS complex, u=-0,1926 ms and ó=5,7413 ms for the onset of the T wave, u=-0,3346 ms and ó=6,3991 ms for the offset of the T wave.MAXWELLCARLOS ROBERTO HALL BARBOSACARLOS ROBERTO HALL BARBOSACARLOS ROBERTO HALL BARBOSAALEXANDRE STURMER WOLF2004-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@2http://doi.org/10.17771/PUCRio.acad.4817porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2019-05-23T00:00:00Zoai:MAXWELL.puc-rio.br:4817Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342019-05-23T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
[en] AUTOMATIC ANALISYS OF ELECTROCARDIOGRAPHIC SIGNALS USING ARTIFICIAL NEURAL NETWORKS
title [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
spellingShingle [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
ALEXANDRE STURMER WOLF
[pt] REDE NEURAL ARTIFICIAL
[pt] ANALISE AUTOMATICO DE SINAIS
[en] ARTIFICIAL NEURAL NETWORKS
[en] AUTOMATIC SIGNAL ANALISYS
title_short [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
title_full [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
title_fullStr [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
title_full_unstemmed [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
title_sort [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS
author ALEXANDRE STURMER WOLF
author_facet ALEXANDRE STURMER WOLF
author_role author
dc.contributor.none.fl_str_mv CARLOS ROBERTO HALL BARBOSA
CARLOS ROBERTO HALL BARBOSA
CARLOS ROBERTO HALL BARBOSA
dc.contributor.author.fl_str_mv ALEXANDRE STURMER WOLF
dc.subject.por.fl_str_mv [pt] REDE NEURAL ARTIFICIAL
[pt] ANALISE AUTOMATICO DE SINAIS
[en] ARTIFICIAL NEURAL NETWORKS
[en] AUTOMATIC SIGNAL ANALISYS
topic [pt] REDE NEURAL ARTIFICIAL
[pt] ANALISE AUTOMATICO DE SINAIS
[en] ARTIFICIAL NEURAL NETWORKS
[en] AUTOMATIC SIGNAL ANALISYS
description [pt] O objetivo dessa dissertação é o desenvolvimento de um algoritmo para a análise automática de sinais eletrocardiográficos, baseado em Redes Neurais Artificiais. O sistema é dividido em vários sub- programas utilizados para extrair informações do registro eletrocardiográfico de pacientes, informando a existência de anormalidades a partir da comparação dos valores obtidos com os valores de normalidade disponíveis na literatura biomédica. O programa utiliza 4 segundos do sinal de eletrocardiograma para uma análise classificatória inicial, verificando a viabilidade da extração de informações. Sendo possível esta extração, são obtidos os ciclos cardíacos existentes nesse sinal, e deles são extraídas informações quantitativas dos componentes de suas ondas, que posteriormente serão comparadas com faixas de normalidade por meio de um conjunto de regras heurísticas, indicando assim a possível presença de alterações morfológicas do registro. Esse programa pode ser utilizado em comunidades carentes para orientar a necessidade de encaminhamento a um especialista, cuja presença é rara na maior parte dos postos de atendimento generalista. Também pode auxiliar ao médico especialista, indicando de forma objetiva as possíveis alterações do registro eletrocardiográfico. Os resultados obtidos podem ser considerados satisfatórios, sendo que os valores são compatíveis com a sua natureza, principalmente no que diz respeito aos problemas de baixa razão sinal/ruído existente nos sinais analisados. Para verificação dos resultados de localização dos pontos inicial e final de cada componente do ECG, uma das métricas utilizadas foi o MAPE, obtendo-se, 19,44 por cento para onda P,4,85 por cento para o complexo QRS, 8,93 por cento para o início da onda T e 7,76 por cento para o final da onda T. Outra métrica utilizada para comparar os resultados obtidos com outro artigo, foi a Média Aritmética/Desvio Padrão, onde se obteve mi=-0,8264 ms e sigma=3,7037 ms para o início da onda P, mi=-1,5082 ms e sigma=2,2890 ms para o fim da onda P, mi=-0,2104 ms e sigma=3,2486 ms para o início do complexo QRS, mi=-0,4309 ms e sigma=3,9542 ms para o fim do complexo QRS, mi=-0,1926 ms e sigma=5,7413 ms para o início da onda T, mi=-0,3346 ms e sigma=6,3991 ms para o fim da onda T.
publishDate 2004
dc.date.none.fl_str_mv 2004-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@2
http://doi.org/10.17771/PUCRio.acad.4817
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4817@2
http://doi.org/10.17771/PUCRio.acad.4817
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822549073166336