A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS

Detalhes bibliográficos
Autor(a) principal: HELVIO DE FARIAS COSTA PEIXOTO
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@2
Resumo: Desde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional.
id PUC_RIO-1_eefe9cc8245e1eac3123ca80624dfebe
oai_identifier_str oai:MAXWELL.puc-rio.br:34740
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisA FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS UM MÉTODO FAST MULTIPOLE PARA ELEMENTOS DE CONTORNO DE ALTA ORDEM 2018-04-13NEY AUGUSTO DUMONT26335425734lattes.cnpq.br/3590099965532014NEY AUGUSTO DUMONTDEANE DE MESQUITA ROEHLRODRIGO BIRD BURGOSRODRIGO BIRD BURGOSRODRIGO BIRD BURGOS06219834461lattes.cnpq.br/3009384405230104HELVIO DE FARIAS COSTA PEIXOTOPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPPG EM ENGENHARIA CIVILPUC-RioBRDesde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional.The Fast Multipole Method (FMM) has been used since the 1990s with the Boundary Elements Method (BEM) for the simulation of large-scale problems. This method relies on Taylor series expansions of the underlying fundamental solutions to cluster the nodes on the discretised boundary of a domain, aiming to reduce the computational time required to carry out the simulation. It has become an important tool for the BEMs, as they present matrices that are full and nonsymmetric, so that the improvement of storage allocation and execution time is not a simple task. The application of the FMM to the BEM ends up with a very intricate code, and usually changing from one problem s fundamental solution to another is not a simple matter. This work presents a kernel-independent formulation of the FMM, here called the General Fast Multipole Method (GFMM), which is also able to deal with high order, curved boundary elements in a straightforward manner. This is an important feature, as the fast multipole implementations reported in the literature only apply to constant elements. All necessary aspects of this method are presented, starting with the mathematical basics of both FMM and BEM, carrying out some numerical assessments, and ending up with the solution of large potential problems. The application of the GFMM to both potential and elasticity problems is discussed and validated in the context of BEM. Furthermore, the formulation of the GFMM with the Simplified Hybrid Boundary Elements Method (SHBEM) is presented. Several numerical assessments show that the GFMM is highly efficient and may be as accurate as arbitrarily required, for problems with up to many millions of degrees of freedom. The literature proposes that the FMM is capable of reducing the time complexity of the BEM algorithms from O(N2) to O(N), where N is the number of degrees of freedom. In fact, it is shown that the GFMM is able to arrive at such time reduction without resorting to techniques of computational optimisation.https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@2engreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-11-01T13:43:02Zoai:MAXWELL.puc-rio.br:34740Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-08-10T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.en.fl_str_mv A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
dc.title.alternative.pt.fl_str_mv UM MÉTODO FAST MULTIPOLE PARA ELEMENTOS DE CONTORNO DE ALTA ORDEM
title A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
spellingShingle A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
HELVIO DE FARIAS COSTA PEIXOTO
title_short A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
title_full A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
title_fullStr A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
title_full_unstemmed A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
title_sort A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS
author HELVIO DE FARIAS COSTA PEIXOTO
author_facet HELVIO DE FARIAS COSTA PEIXOTO
author_role author
dc.contributor.advisor1.fl_str_mv NEY AUGUSTO DUMONT
dc.contributor.advisor1ID.fl_str_mv 26335425734
dc.contributor.advisor1Lattes.fl_str_mv lattes.cnpq.br/3590099965532014
dc.contributor.referee1.fl_str_mv NEY AUGUSTO DUMONT
dc.contributor.referee2.fl_str_mv DEANE DE MESQUITA ROEHL
dc.contributor.referee3.fl_str_mv RODRIGO BIRD BURGOS
dc.contributor.referee4.fl_str_mv RODRIGO BIRD BURGOS
dc.contributor.referee5.fl_str_mv RODRIGO BIRD BURGOS
dc.contributor.authorID.fl_str_mv 06219834461
dc.contributor.authorLattes.fl_str_mv lattes.cnpq.br/3009384405230104
dc.contributor.author.fl_str_mv HELVIO DE FARIAS COSTA PEIXOTO
contributor_str_mv NEY AUGUSTO DUMONT
NEY AUGUSTO DUMONT
DEANE DE MESQUITA ROEHL
RODRIGO BIRD BURGOS
RODRIGO BIRD BURGOS
RODRIGO BIRD BURGOS
description Desde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional.
publishDate 2018
dc.date.issued.fl_str_mv 2018-04-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@2
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34740@2
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.publisher.program.fl_str_mv PPG EM ENGENHARIA CIVIL
dc.publisher.initials.fl_str_mv PUC-Rio
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1748324939005427712