Effect size: a statistical basis for clinical practice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista odonto ciência (Online) |
Texto Completo: | https://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/29437 |
Resumo: | OBJECTIVE: Effect size (ES) is the statistical measure which quantifies the strength of a phenomenon and is commonly applied to observational and interventional studies. The aim of this review was to describe the conceptual basis of this measure, including its application, calculation and interpretation.RESULTS: As well as being used to detect the magnitude of the difference between groups, to verify the strength of association between predictor and outcome variables, to calculate sample size and power, ES is also used in meta-analysis. ES formulas can be divided into these categories: I – Difference between groups, II – Strength of association, III – Risk estimation, and IV – Multivariate data. The d value was originally considered small (0.20 > d ≤ 0.49), medium (0.50 > d≤ 0.79) or large (d ≥ 0.80); however, these cut-off limits are not consensual and could be contextualized according to a specific field of knowledge. In general, a larger score implies that a larger difference was detected.CONCLUSION: The ES report, in conjunction with the confidence interval and P value, aims to strengthen interpretation and prevent the misinterpretation of data, and thus leads to clinical decisions being based on scientific evidence studies. |
id |
PUC_RS-22_716c3bfa17f8df0ec4f3c71fc4f4775f |
---|---|
oai_identifier_str |
oai:ojs.revistaseletronicas.pucrs.br:article/29437 |
network_acronym_str |
PUC_RS-22 |
network_name_str |
Revista odonto ciência (Online) |
repository_id_str |
|
spelling |
Effect size: a statistical basis for clinical practiceEffect size: a statistical basis for clinical practiceeffect sizeP valuestatistical interpretationclinical decision-makingclinical effectiveness.effect sizeP valuestatistical interpretationclinical decision-makingclinical effectiveness.OBJECTIVE: Effect size (ES) is the statistical measure which quantifies the strength of a phenomenon and is commonly applied to observational and interventional studies. The aim of this review was to describe the conceptual basis of this measure, including its application, calculation and interpretation.RESULTS: As well as being used to detect the magnitude of the difference between groups, to verify the strength of association between predictor and outcome variables, to calculate sample size and power, ES is also used in meta-analysis. ES formulas can be divided into these categories: I – Difference between groups, II – Strength of association, III – Risk estimation, and IV – Multivariate data. The d value was originally considered small (0.20 > d ≤ 0.49), medium (0.50 > d≤ 0.79) or large (d ≥ 0.80); however, these cut-off limits are not consensual and could be contextualized according to a specific field of knowledge. In general, a larger score implies that a larger difference was detected.CONCLUSION: The ES report, in conjunction with the confidence interval and P value, aims to strengthen interpretation and prevent the misinterpretation of data, and thus leads to clinical decisions being based on scientific evidence studies.OBJECTIVE: Effect size (ES) is the statistical measure which quantifies the strength of a phenomenon and is commonly applied to observational and interventional studies. The aim of this review was to describe the conceptual basis of this measure, including its application, calculation and interpretation.RESULTS: As well as being used to detect the magnitude of the difference between groups, to verify the strength of association between predictor and outcome variables, to calculate sample size and power, ES is also used in meta-analysis. ES formulas can be divided into these categories: I – Difference between groups, II – Strength of association, III – Risk estimation, and IV – Multivariate data. The d value was originally considered small (0.20 > d ≤ 0.49), medium (0.50 > d≤ 0.79) or large (d ≥ 0.80); however, these cut-off limits are not consensual and could be contextualized according to a specific field of knowledge. In general, a larger score implies that a larger difference was detected.CONCLUSION: The ES report, in conjunction with the confidence interval and P value, aims to strengthen interpretation and prevent the misinterpretation of data, and thus leads to clinical decisions being based on scientific evidence studies. *** Tamanho do efeito: base estatística para a prática clínica ***OBJETIVO: O tamanho do efeito (ES) é a medida estatística que quantifica a força de um fenômeno e é comumente aplicada a estudos observacionais e de intervenção. O objetivo desta revisão foi descrever a base conceitual desta medida, incluindo sua aplicação, cálculo e interpretação.RESULTADOS: Além de ser usado para detectar a magnitude da diferença entre os grupos, para verificar a força da associação entre variáveis preditoras e de desfecho, para calcular o tamanho da amostra e a potência, ES também é usado em metanálise. As fórmulas ES podem ser divididas nestas categorias: I – Diferença entre grupos, II – Força de associação, III – Estimativa de risco e IV – Dados multivariados. O valor d foi originalmente considerado pequeno (0,20 > d ≤ 0,49), médio (0,50 > d ≤ 0,79) ou grande (d ≥ 0,80); entretanto, esses limites de corte não são consensuais e podem ser contextualizados de acordo com um campo específico de conhecimento. Em geral, uma pontuação maior implica que uma diferença maior foi detectada.CONCLUSÃO: O ES, em conjunto com o intervalo de confiança e valor de P, visa reforçar a interpretação e evitar a má interpretação dos dados, e, assim, leva a decisões clínicas baseadas em estudos de evidências científicas.Palavras-chave: tamanho do efeito; valor de P, interpretação estatística; tomada de decisão; eficácia clínica.EDIPUCRS - Editora Universitária da PUCRS2018-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Article. Invited Article.Literature reviewapplication/pdfhttps://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/2943710.15448/1980-6523.2018.1.29437Revista Odonto Ciência; Vol. 33 No. 1 (2018); 84-90Revista Odonto Ciência; v. 33 n. 1 (2018); 84-901980-65230102-946010.15448/1980-6523.2018.1reponame:Revista odonto ciência (Online)instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSenghttps://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/29437/17892Copyright (c) 2019 Revista Odonto Ciênciainfo:eu-repo/semantics/openAccessValladares-Neto, José2019-04-24T17:19:21Zoai:ojs.revistaseletronicas.pucrs.br:article/29437Revistahttps://revistaseletronicas.pucrs.br/ojs/index.php/foPRIhttps://revistaseletronicas.pucrs.br/ojs/index.php/fo/oai||odontociencia@pucrs.br1980-65230102-9460opendoar:2019-04-24T17:19:21Revista odonto ciência (Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.none.fl_str_mv |
Effect size: a statistical basis for clinical practice Effect size: a statistical basis for clinical practice |
title |
Effect size: a statistical basis for clinical practice |
spellingShingle |
Effect size: a statistical basis for clinical practice Valladares-Neto, José effect size P value statistical interpretation clinical decision-making clinical effectiveness. effect size P value statistical interpretation clinical decision-making clinical effectiveness. |
title_short |
Effect size: a statistical basis for clinical practice |
title_full |
Effect size: a statistical basis for clinical practice |
title_fullStr |
Effect size: a statistical basis for clinical practice |
title_full_unstemmed |
Effect size: a statistical basis for clinical practice |
title_sort |
Effect size: a statistical basis for clinical practice |
author |
Valladares-Neto, José |
author_facet |
Valladares-Neto, José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Valladares-Neto, José |
dc.subject.por.fl_str_mv |
effect size P value statistical interpretation clinical decision-making clinical effectiveness. effect size P value statistical interpretation clinical decision-making clinical effectiveness. |
topic |
effect size P value statistical interpretation clinical decision-making clinical effectiveness. effect size P value statistical interpretation clinical decision-making clinical effectiveness. |
description |
OBJECTIVE: Effect size (ES) is the statistical measure which quantifies the strength of a phenomenon and is commonly applied to observational and interventional studies. The aim of this review was to describe the conceptual basis of this measure, including its application, calculation and interpretation.RESULTS: As well as being used to detect the magnitude of the difference between groups, to verify the strength of association between predictor and outcome variables, to calculate sample size and power, ES is also used in meta-analysis. ES formulas can be divided into these categories: I – Difference between groups, II – Strength of association, III – Risk estimation, and IV – Multivariate data. The d value was originally considered small (0.20 > d ≤ 0.49), medium (0.50 > d≤ 0.79) or large (d ≥ 0.80); however, these cut-off limits are not consensual and could be contextualized according to a specific field of knowledge. In general, a larger score implies that a larger difference was detected.CONCLUSION: The ES report, in conjunction with the confidence interval and P value, aims to strengthen interpretation and prevent the misinterpretation of data, and thus leads to clinical decisions being based on scientific evidence studies. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article. Invited Article. Literature review |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/29437 10.15448/1980-6523.2018.1.29437 |
url |
https://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/29437 |
identifier_str_mv |
10.15448/1980-6523.2018.1.29437 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistaseletronicas.pucrs.br/ojs/index.php/fo/article/view/29437/17892 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Revista Odonto Ciência info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Revista Odonto Ciência |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDIPUCRS - Editora Universitária da PUCRS |
publisher.none.fl_str_mv |
EDIPUCRS - Editora Universitária da PUCRS |
dc.source.none.fl_str_mv |
Revista Odonto Ciência; Vol. 33 No. 1 (2018); 84-90 Revista Odonto Ciência; v. 33 n. 1 (2018); 84-90 1980-6523 0102-9460 10.15448/1980-6523.2018.1 reponame:Revista odonto ciência (Online) instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Revista odonto ciência (Online) |
collection |
Revista odonto ciência (Online) |
repository.name.fl_str_mv |
Revista odonto ciência (Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
||odontociencia@pucrs.br |
_version_ |
1754820877129613312 |