Pain and physical activity for one individual: A comparison of models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Medica (Porto Alegre. Online) |
Texto Completo: | https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237 |
Resumo: | Aims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed. |
id |
PUC_RS-25_fdfbd3aa5aa74b594e090a06e6e308f6 |
---|---|
oai_identifier_str |
oai:ojs.revistaseletronicas.pucrs.br:article/43237 |
network_acronym_str |
PUC_RS-25 |
network_name_str |
Scientia Medica (Porto Alegre. Online) |
repository_id_str |
|
spelling |
Pain and physical activity for one individual: A comparison of modelsDor e atividade física para um indivíduo: Uma comparação de modelosautoregressive correlation modelsdynamic regression modelingmultilevel modelingobservational researchsingle case datamodelos de correlação autorregressivamodelagem de regressão dinâmicamodelagem multinívelpesquisa observacionaldados de caso únicoAims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed.Objetivos: há uma crescente conscientização de que, para um atendimento eficaz ao paciente, precisamos de mais do que apenas ensaios clínicos randomizados com grupos de participantes e que os dados de caso único cuidadosamente coletados (N = 1) têm várias vantagens importantes sobre os estudos tradicionais em nível de grupo. Com o avanço da tecnologia, coletar dados relevantes de um único caso está se tornando mais fácil a cada dia, e isso oferece enormes oportunidades para entender como os comportamentos exibidos por um indivíduo podem ser influenciados por uma ou várias variáveis-chave. Por exemplo, como a dor experimentada influencia a quantidade de tempo gasto no exercício físico.Método: usando dados de caso único observacionais disponíveis publicamente, cinco modelos são comparados: um modelo clássico de regressão linear de mínimos quadrados ordinários (OLS); um modelo de regressão dinâmica (DRM); um modelo de interceptações aleatórias de dois níveis (2LRI); um modelo de correlação autorregressiva de primeira ordem covariável contínua (CAR1); e um modelo ordinário de mínimos quadrados com tendência temporal (OLST). Esses modelos são comparados em termos de estatísticas gerais de ajuste do modelo, estimativas da relação entre atividade física (variável de resposta de interesse) e dor (covariável de interesse) e estatísticas residuais.Resultados: o 2LRI supera todos os outros modelos tanto no ajuste geral do modelo quanto nas estatísticas residuais e fornece estimativas de covariáveis que estão entre os extremos relativos fornecidos por outros modelos. CAR1 e OLST demonstram um desempenho quase idêntico e substancialmente melhor que o OLS, que apresenta o pior desempenho, e o DRM.Conclusão: para dados observacionais de caso único, DRM, CAR1, OLST e 2LRI são responsáveis pela correlação seriada que normalmente está presente em dados de caso único de maneira um pouco diferentes sob suposições um pouco diversas, e todos têm um desempenho melhor que o OLS. Implicações dessas descobertas para estudos de caso único observacionais, quase-experimentais e experimentais são discutidas.Editora da PUCRS - ediPUCRS2022-12-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistaseletronicas.pucrs.br/scientiamedica/article/view/4323710.15448/1980-6108.2022.1.43237Scientia Medica; Vol. 32 No. 1 (2022): Single Volume; e43237Scientia Medica; v. 32 n. 1 (2022): Volume Único; e432371980-61081806-556210.15448/1980-6108.2022.1reponame:Scientia Medica (Porto Alegre. Online)instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSenghttps://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237/27867Copyright (c) 2022 Scientia Medicahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLeppink, Jimmie2022-12-16T12:09:43Zoai:ojs.revistaseletronicas.pucrs.br:article/43237Revistahttps://revistaseletronicas.pucrs.br/scientiamedica/PUBhttps://revistaseletronicas.pucrs.br/scientiamedica/oaiscientiamedica@pucrs.br || editora.periodicos@pucrs.br1980-61081806-5562opendoar:2022-12-16T12:09:43Scientia Medica (Porto Alegre. Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.none.fl_str_mv |
Pain and physical activity for one individual: A comparison of models Dor e atividade física para um indivíduo: Uma comparação de modelos |
title |
Pain and physical activity for one individual: A comparison of models |
spellingShingle |
Pain and physical activity for one individual: A comparison of models Leppink, Jimmie autoregressive correlation models dynamic regression modeling multilevel modeling observational research single case data modelos de correlação autorregressiva modelagem de regressão dinâmica modelagem multinível pesquisa observacional dados de caso único |
title_short |
Pain and physical activity for one individual: A comparison of models |
title_full |
Pain and physical activity for one individual: A comparison of models |
title_fullStr |
Pain and physical activity for one individual: A comparison of models |
title_full_unstemmed |
Pain and physical activity for one individual: A comparison of models |
title_sort |
Pain and physical activity for one individual: A comparison of models |
author |
Leppink, Jimmie |
author_facet |
Leppink, Jimmie |
author_role |
author |
dc.contributor.author.fl_str_mv |
Leppink, Jimmie |
dc.subject.por.fl_str_mv |
autoregressive correlation models dynamic regression modeling multilevel modeling observational research single case data modelos de correlação autorregressiva modelagem de regressão dinâmica modelagem multinível pesquisa observacional dados de caso único |
topic |
autoregressive correlation models dynamic regression modeling multilevel modeling observational research single case data modelos de correlação autorregressiva modelagem de regressão dinâmica modelagem multinível pesquisa observacional dados de caso único |
description |
Aims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-05 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237 10.15448/1980-6108.2022.1.43237 |
url |
https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237 |
identifier_str_mv |
10.15448/1980-6108.2022.1.43237 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237/27867 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Scientia Medica http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Scientia Medica http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da PUCRS - ediPUCRS |
publisher.none.fl_str_mv |
Editora da PUCRS - ediPUCRS |
dc.source.none.fl_str_mv |
Scientia Medica; Vol. 32 No. 1 (2022): Single Volume; e43237 Scientia Medica; v. 32 n. 1 (2022): Volume Único; e43237 1980-6108 1806-5562 10.15448/1980-6108.2022.1 reponame:Scientia Medica (Porto Alegre. Online) instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Scientia Medica (Porto Alegre. Online) |
collection |
Scientia Medica (Porto Alegre. Online) |
repository.name.fl_str_mv |
Scientia Medica (Porto Alegre. Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
scientiamedica@pucrs.br || editora.periodicos@pucrs.br |
_version_ |
1809101752558944256 |