Pain and physical activity for one individual: A comparison of models

Detalhes bibliográficos
Autor(a) principal: Leppink, Jimmie
Data de Publicação: 2022
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Medica (Porto Alegre. Online)
Texto Completo: https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237
Resumo: Aims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed.
id PUC_RS-25_fdfbd3aa5aa74b594e090a06e6e308f6
oai_identifier_str oai:ojs.revistaseletronicas.pucrs.br:article/43237
network_acronym_str PUC_RS-25
network_name_str Scientia Medica (Porto Alegre. Online)
repository_id_str
spelling Pain and physical activity for one individual: A comparison of modelsDor e atividade física para um indivíduo: Uma comparação de modelosautoregressive correlation modelsdynamic regression modelingmultilevel modelingobservational researchsingle case datamodelos de correlação autorregressivamodelagem de regressão dinâmicamodelagem multinívelpesquisa observacionaldados de caso únicoAims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed.Objetivos: há uma crescente conscientização de que, para um atendimento eficaz ao paciente, precisamos de mais do que apenas ensaios clínicos randomizados com grupos de participantes e que os dados de caso único cuidadosamente coletados (N = 1) têm várias vantagens importantes sobre os estudos tradicionais em nível de grupo. Com o avanço da tecnologia, coletar dados relevantes de um único caso está se tornando mais fácil a cada dia, e isso oferece enormes oportunidades para entender como os comportamentos exibidos por um indivíduo podem ser influenciados por uma ou várias variáveis-chave. Por exemplo, como a dor experimentada influencia a quantidade de tempo gasto no exercício físico.Método: usando dados de caso único observacionais disponíveis publicamente, cinco modelos são comparados: um modelo clássico de regressão linear de mínimos quadrados ordinários (OLS); um modelo de regressão dinâmica (DRM); um modelo de interceptações aleatórias de dois níveis (2LRI); um modelo de correlação autorregressiva de primeira ordem covariável contínua (CAR1); e um modelo ordinário de mínimos quadrados com tendência temporal (OLST). Esses modelos são comparados em termos de estatísticas gerais de ajuste do modelo, estimativas da relação entre atividade física (variável de resposta de interesse) e dor (covariável de interesse) e estatísticas residuais.Resultados: o 2LRI supera todos os outros modelos tanto no ajuste geral do modelo quanto nas estatísticas residuais e fornece estimativas de covariáveis que estão entre os extremos relativos fornecidos por outros modelos. CAR1 e OLST demonstram um desempenho quase idêntico e substancialmente melhor que o OLS, que apresenta o pior desempenho, e o DRM.Conclusão: para dados observacionais de caso único, DRM, CAR1, OLST e 2LRI são responsáveis pela correlação seriada que normalmente está presente em dados de caso único de maneira um pouco diferentes sob suposições um pouco diversas, e todos têm um desempenho melhor que o OLS. Implicações dessas descobertas para estudos de caso único observacionais, quase-experimentais e experimentais são discutidas.Editora da PUCRS - ediPUCRS2022-12-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistaseletronicas.pucrs.br/scientiamedica/article/view/4323710.15448/1980-6108.2022.1.43237Scientia Medica; Vol. 32 No. 1 (2022): Single Volume; e43237Scientia Medica; v. 32 n. 1 (2022): Volume Único; e432371980-61081806-556210.15448/1980-6108.2022.1reponame:Scientia Medica (Porto Alegre. Online)instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSenghttps://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237/27867Copyright (c) 2022 Scientia Medicahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLeppink, Jimmie2022-12-16T12:09:43Zoai:ojs.revistaseletronicas.pucrs.br:article/43237Revistahttps://revistaseletronicas.pucrs.br/scientiamedica/PUBhttps://revistaseletronicas.pucrs.br/scientiamedica/oaiscientiamedica@pucrs.br || editora.periodicos@pucrs.br1980-61081806-5562opendoar:2022-12-16T12:09:43Scientia Medica (Porto Alegre. Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Pain and physical activity for one individual: A comparison of models
Dor e atividade física para um indivíduo: Uma comparação de modelos
title Pain and physical activity for one individual: A comparison of models
spellingShingle Pain and physical activity for one individual: A comparison of models
Leppink, Jimmie
autoregressive correlation models
dynamic regression modeling
multilevel modeling
observational research
single case data
modelos de correlação autorregressiva
modelagem de regressão dinâmica
modelagem multinível
pesquisa observacional
dados de caso único
title_short Pain and physical activity for one individual: A comparison of models
title_full Pain and physical activity for one individual: A comparison of models
title_fullStr Pain and physical activity for one individual: A comparison of models
title_full_unstemmed Pain and physical activity for one individual: A comparison of models
title_sort Pain and physical activity for one individual: A comparison of models
author Leppink, Jimmie
author_facet Leppink, Jimmie
author_role author
dc.contributor.author.fl_str_mv Leppink, Jimmie
dc.subject.por.fl_str_mv autoregressive correlation models
dynamic regression modeling
multilevel modeling
observational research
single case data
modelos de correlação autorregressiva
modelagem de regressão dinâmica
modelagem multinível
pesquisa observacional
dados de caso único
topic autoregressive correlation models
dynamic regression modeling
multilevel modeling
observational research
single case data
modelos de correlação autorregressiva
modelagem de regressão dinâmica
modelagem multinível
pesquisa observacional
dados de caso único
description Aims: there is increasing awareness that for effective patient care we need more than only randomized controlled trials with groups of participants and that carefully collected single case (N = 1) data have several important advantages over traditional group-level studies. With the advance of technology, collecting relevant data from a single case is becoming easier by the day, and this offers tremendous opportunities for understanding how behaviors displayed by an individual can be influenced by one or several key variables. For example, how pain experienced influences the amount of time spent on physical exercise. Method: using publicly available observational single case data, five models are compared: a classical ordinary least squares (OLS) linear regression model; a dynamic regression model (DRM); a two-level random-intercepts model (2LRI); a continuous covariate first-order autoregressive correlation model (CAR1); and an ordinary least squares model with time trend (OLST). These models are compared in terms of overall model fit statistics, estimates of the relation between physical activity (response variable of interest) and pain (covariate of interest), and residual statistics. Results: 2LRI outperforms all other models on both overall model fit and residual statistics, and provides covariate estimates that are in between the relative extremes provided by other models. CAR1 and OLST demonstrate an almost identical performance and one that is substantially better than OLS – which performs worst – and DRM. Conclusion: for observational single case data, DRM, CAR1, OLST, and 2LRI account for the serial correlation that is typically present in single case data in somewhat different ways under somewhat different assumptions, and all perform better than OLS. Implications of these findings for observational, quasi-experimental, and experimental single case studies are discussed.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237
10.15448/1980-6108.2022.1.43237
url https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237
identifier_str_mv 10.15448/1980-6108.2022.1.43237
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistaseletronicas.pucrs.br/scientiamedica/article/view/43237/27867
dc.rights.driver.fl_str_mv Copyright (c) 2022 Scientia Medica
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Scientia Medica
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da PUCRS - ediPUCRS
publisher.none.fl_str_mv Editora da PUCRS - ediPUCRS
dc.source.none.fl_str_mv Scientia Medica; Vol. 32 No. 1 (2022): Single Volume; e43237
Scientia Medica; v. 32 n. 1 (2022): Volume Único; e43237
1980-6108
1806-5562
10.15448/1980-6108.2022.1
reponame:Scientia Medica (Porto Alegre. Online)
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Scientia Medica (Porto Alegre. Online)
collection Scientia Medica (Porto Alegre. Online)
repository.name.fl_str_mv Scientia Medica (Porto Alegre. Online) - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv scientiamedica@pucrs.br || editora.periodicos@pucrs.br
_version_ 1809101752558944256