Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores

Detalhes bibliográficos
Autor(a) principal: Barradas, José Ricardo de Souza
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da PUC_RS
Texto Completo: http://tede2.pucrs.br/tede2/handle/tede/229
Resumo: Given the limitations of the logit model, represented by the equation P = e(b0 + b1 x1 + b2 x2 + ... + bi xi) . (1 + e(b0 + b1 x1 + b2 x2 + ... + bi xi))-1, where: P is the probability of occurrence of the species (0-1), x1, x2 and xi are the environmental descriptors, b0, b1, b2 and bi are coefficients of the model calibration, and LOGITm, represented by the equation P = e(b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)) . (1 + e (b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), , b1 and b2 are coefficients related to altitude and basin area, respectively, and PMF is the point of changing phase of each parameter, as described in the literature for prediction of probability distribution of species in extreme situations due to compensatory mechanisms resulting from the design of these models, the goal of this study was to propose a new statistical model for the distribution of species of migratory fish and compare it with the models mentioned above. It was used the available database derived from the project PEIXES MIGRADORES E POTENCIAL HIDRELÉTRICO: GESTÃO INTEGRADA DA BACIA URUGUAI (RS/SC), which is composed of 167 points distributed throughout the Brazilian territory of the watershed. The model proposed in this study (Logistic Product - LP) is represented by the following equation: P = (1 b0) + b0 . (1 + e(TAXAAltitude . (Altitude PMFAltitude)))-1 . (1 + e(-TAXAÁrea de Bacia . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), b0 is a fraction of the likelihood of unexplained by any of the descriptors; TAXA is a parameter indicative of the relative speed of change of absent/presence and PMF is the point of changing phase of each parameter. The models were adjusted for four species of migratory large Uruguay River basin: Leporinus obtusidens (piava), Prochilodus lineatus (grumatã) Pseudoplatystoma corruscans (pintado) and Salminus brasiliensis (dourado). The models were analyzed according to (1) adherence between their expected occurrence and estimated, (2) formats dimensional fields of the residual variance as a function of the variables altitude and basin area, (3) the formats dimensional fields of probability of occurrence in function of the variables altitude and basin area, and (4) through statistical criteria of Akaike Information Criterion (AIC) and Dimensional Stability Index (DSI), the latter being developed in this study and represented by the following equation: D.S.I. = (CvP1 . CvP2 . CvP3 . ... . CvPi )1/ i, where: CvP1, CvP2, CvP3, CvPi is the coefficient of variation for each parameter. The percentage of adherence obtained were generally around 80%, and, in general, the LP model showed adherence rates between 1% and 4% lower than the other models. The PMFAltitude obtained with the LP model were higher for all species, being 672 m for S. brasiliensis, 516 m for P. lineatus, 651 m for L. obtusidens and 509 m for P. corruscans. The PMFBasin Area were higher for the model LOGITm, except for P. lineatus, where the models LOGITm and LP had the same value (101 km2) and P. corruscans, where the LP model showed a value of 1623 km2 and LOGITm model showed a value of 709 km2. The fields of probability of occurrence for the LOGIT and LOGITm models for all species had the same general behavior in the form of an oblique cross-section sigmoid. However, the fields formed by the residual sum of squares (RSS) obtained with the model LOGITm for all species behaved like a "trough" of lower values of variance, indicating the same statistical quality ara a wide range of combinations of PMFaltitude and PMFBasin Area, which results in lack of stability of the fitting parameters. The LP model presented only one point of lower value of RSS in all settings, showing better stability of the final answer, however, the minimum value obtained was always a little higher than in other models. The fields of probability of occurrence showed that the LP model shows the interaction between environmental variables closer to the biological reality that LOGIT and LOGITm, not being checked the compensatory mechanisms presented in the models LOGIT and LOGITm. The LP model presented the highest values of AIC for all species, and 34.3 for S. brasiliensis, 35.0 for P. lineatus, 35.2 for L. obtusidens and 33.7 for P. corruscans.The model presented in this criterion is less suitable than others to describe the distribution of species. With the DSI method, however, the LP model obtained the lowest values, except for S. brasiliensis, which achieved results slightly higher than the model LOGITm. In the present study we noted the similarity between models LOGIT and LOGITm because, except for L.obtusidens, the differences between them were extremely small, not representative for the studies on this scale. The LP model showed no compensatory mechanisms such as the LOGIT and LOGITm, therefore, although the worst results obtained in the AIC criterion, the resulting improvements in the statistical stability, shape of dimensional field and better predictive ability in extreme situations justify its use.
id P_RS_2433454be2209be673d6063199d2c287
oai_identifier_str oai:tede2.pucrs.br:tede/229
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Fontoura, Nelson FerreiraCPF:41378709004http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785565Y3CPF:01191369021http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4258714Z7Barradas, José Ricardo de Souza2015-04-14T13:09:32Z2012-05-032012-03-20BARRADAS, José Ricardo de Souza. Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores. 2012. 57 f. Dissertação (Mestrado em Zoologia) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2012.http://tede2.pucrs.br/tede2/handle/tede/229Given the limitations of the logit model, represented by the equation P = e(b0 + b1 x1 + b2 x2 + ... + bi xi) . (1 + e(b0 + b1 x1 + b2 x2 + ... + bi xi))-1, where: P is the probability of occurrence of the species (0-1), x1, x2 and xi are the environmental descriptors, b0, b1, b2 and bi are coefficients of the model calibration, and LOGITm, represented by the equation P = e(b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)) . (1 + e (b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), , b1 and b2 are coefficients related to altitude and basin area, respectively, and PMF is the point of changing phase of each parameter, as described in the literature for prediction of probability distribution of species in extreme situations due to compensatory mechanisms resulting from the design of these models, the goal of this study was to propose a new statistical model for the distribution of species of migratory fish and compare it with the models mentioned above. It was used the available database derived from the project PEIXES MIGRADORES E POTENCIAL HIDRELÉTRICO: GESTÃO INTEGRADA DA BACIA URUGUAI (RS/SC), which is composed of 167 points distributed throughout the Brazilian territory of the watershed. The model proposed in this study (Logistic Product - LP) is represented by the following equation: P = (1 b0) + b0 . (1 + e(TAXAAltitude . (Altitude PMFAltitude)))-1 . (1 + e(-TAXAÁrea de Bacia . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), b0 is a fraction of the likelihood of unexplained by any of the descriptors; TAXA is a parameter indicative of the relative speed of change of absent/presence and PMF is the point of changing phase of each parameter. The models were adjusted for four species of migratory large Uruguay River basin: Leporinus obtusidens (piava), Prochilodus lineatus (grumatã) Pseudoplatystoma corruscans (pintado) and Salminus brasiliensis (dourado). The models were analyzed according to (1) adherence between their expected occurrence and estimated, (2) formats dimensional fields of the residual variance as a function of the variables altitude and basin area, (3) the formats dimensional fields of probability of occurrence in function of the variables altitude and basin area, and (4) through statistical criteria of Akaike Information Criterion (AIC) and Dimensional Stability Index (DSI), the latter being developed in this study and represented by the following equation: D.S.I. = (CvP1 . CvP2 . CvP3 . ... . CvPi )1/ i, where: CvP1, CvP2, CvP3, CvPi is the coefficient of variation for each parameter. The percentage of adherence obtained were generally around 80%, and, in general, the LP model showed adherence rates between 1% and 4% lower than the other models. The PMFAltitude obtained with the LP model were higher for all species, being 672 m for S. brasiliensis, 516 m for P. lineatus, 651 m for L. obtusidens and 509 m for P. corruscans. The PMFBasin Area were higher for the model LOGITm, except for P. lineatus, where the models LOGITm and LP had the same value (101 km2) and P. corruscans, where the LP model showed a value of 1623 km2 and LOGITm model showed a value of 709 km2. The fields of probability of occurrence for the LOGIT and LOGITm models for all species had the same general behavior in the form of an oblique cross-section sigmoid. However, the fields formed by the residual sum of squares (RSS) obtained with the model LOGITm for all species behaved like a "trough" of lower values of variance, indicating the same statistical quality ara a wide range of combinations of PMFaltitude and PMFBasin Area, which results in lack of stability of the fitting parameters. The LP model presented only one point of lower value of RSS in all settings, showing better stability of the final answer, however, the minimum value obtained was always a little higher than in other models. The fields of probability of occurrence showed that the LP model shows the interaction between environmental variables closer to the biological reality that LOGIT and LOGITm, not being checked the compensatory mechanisms presented in the models LOGIT and LOGITm. The LP model presented the highest values of AIC for all species, and 34.3 for S. brasiliensis, 35.0 for P. lineatus, 35.2 for L. obtusidens and 33.7 for P. corruscans.The model presented in this criterion is less suitable than others to describe the distribution of species. With the DSI method, however, the LP model obtained the lowest values, except for S. brasiliensis, which achieved results slightly higher than the model LOGITm. In the present study we noted the similarity between models LOGIT and LOGITm because, except for L.obtusidens, the differences between them were extremely small, not representative for the studies on this scale. The LP model showed no compensatory mechanisms such as the LOGIT and LOGITm, therefore, although the worst results obtained in the AIC criterion, the resulting improvements in the statistical stability, shape of dimensional field and better predictive ability in extreme situations justify its use.Tendo em vista as limitações dos modelos LOGIT, representado pela equação P = e(b0 + b1 x1 + b2 x2 +... + bi xi). (1 + e(b0 + b1 x1 + b2 x2 +... + bi xi))-1, onde: P é a probabilidade de ocorrência da espécie (0-1); x1, x2 e xi são os descritores ambientais de ocorrência; b0, b1, b2 e bi são coeficientes de calibração do modelo, e LOGITm, representado pela equação P = e(b1. (Altitude - PMFAltitude) + b2. (Área de Bacia PMFÁrea de Bacia)). (1 + e (b1. (Altitude - PMFAltitude) + b2. (Área de Bacia PMFÁrea de Bacia)))-1, onde: P é a probabilidade de ocorrência da espécie (0-1); b1 e b2 são coeficientes relativos à altitude e área de bacia, respectivamente; PMF é o ponto de mudança de fase de cada parâmetro, já descritos em literatura, para predição de distribuição probabilística de espécies em situaçõeslimite devido a mecanismos compensatórios consequentes do desenho desses modelos, o objetivo deste trabalho foi propor um novo modelo estatístico para distribuição de espécies de peixes migradores e compará-lo com os modelos citados acima. Foi utilizada a base de dados disponível derivada do projeto PEIXES MIGRADORES E POTENCIAL HIDRELÉTRICO: GESTÃO INTEGRADA DA BACIA URUGUAI (RS/SC), sendo esta composta por 167 pontos distribuídos por todo o território brasileiro da bacia hidrográfica. O modelo proposto neste estudo (Logistic Product LP) é respresentado pela seguinte equação: P = (1 b0) + b0. (1 + e(TAXAAltitude. (Altitude PMFAltitude)))-1. (1 + e(-TAXAÁrea de Bacia. (Área de Bacia PMFÁrea de Bacia)))-1, onde: P é a probabilidade de ocorrência da espécie (0-1); b0 é uma fração da probabilidade de ocorrência não explicada por qualquer dos descritores; TAXA é um parâmetro indicativo da velocidade relativa de mudança de estado ausente/presente; PMF é o ponto de mudança de fase de cada parâmetro. Os modelos foram ajustados para quatro espécies migradoras de grande porte da bacia hidrográfica do rio Uruguai: Leporinus obtusidens (piava), Prochilodus lineatus (grumatã), Pseudoplatystoma corruscans (pintado) e Salminus brasiliensis (dourado). Os modelos foram analisados conforme (1) suas aderências entre a ocorrência prevista e estimada; (2) formatos dos campos dimensionais da variância residual em função das variáveis altitude e área de bacia, (3) pelos formatos do campos dimensionais de probabilidade de ocorrência em função das variáveis altitude e área de bacia, e (4) através dos critérios estatísticos Akaike Information Criterion (AIC) e Dimensional Stability Index (DSI), sendo o último desenvolvido neste estudo e representado pela seguinte equação: D.S.I. = (CvP1. CvP2. CvP3..... CvPi )1/ i, onde: CvP1, CvP2, CvP3, CvPi é o coeficiente de variação de cada parâmetro. Os percentuais de aderência obtidos foram geralmente próximos a 80%, e, de forma geral, o modelo LP apresentou índices de aderência entre 1% e 4% mais baixos que os demais modelos. Os PMFAltitude obtidos com o modelo LP foram mais altos para todas as espécies, sendo de 672 m para S. brasiliensis, 516 m para P. lineatus, 651 m para L. obtusidens e 509 m para P. corruscans. Os PMFÁrea de Bacia foram maiores para o modelo LOGITm, exceto para P. lineatus, onde os modelos LP e LOGITm apresentaram o mesmo valor (101 km2) e para P. corruscans, onde o modelo LP apresentou valor de 1623 km2 e o modelo LOGITm apresentou valor de 709 km2. Para os modelos LOGIT e LOGITm os campos de probabilidade de ocorrência das espécies apresentou o mesmo comportamento geral, na forma de um plano oblíquo com seção transversal sigmoide. Entretanto, os campos formados pelo somatório dos quadrados dos resíduos (SQR) obtidos com o modelo LOGITm para todas as espécies apresentaram comportamento de calha de menores valores de variância residual, indicando igual qualidade estatística ara um amplo conjunto de combinações de PMF de altitude e área de bacia, o que resulta em falta de estabilidade dos parâmetros de ajuste. O modelo LP apresentou sempre um ponto de menor valor de SQR em todos os ajustes, mostrando melhor estabilidade da resposta final, porém, o valor mínimo obtido foi sempre um pouco mais elevado que nos demais modelos. Os campos de probabilidade de ocorrência mostraram que o modelo LP apresenta interação entre as variáveis ambientas mais próxima da realidade biológica que os modelos LOGIT e LOGITm, não sendo verificados mecanismos compensatórios como nos modelos LOGIT e LOGITm. O modelo LP apresentou os maiores valores de AIC para todas as espécies, sendo 34,3 para S. brasiliensis, 35,0 para P. lineatus, 35,2 para L. obtusidens e 33,7 para P. corruscans. Neste critério o modelo apresentou-se menos adequado que os demais para descrever a distribuição das espécies. Com o método DSI, entretanto, o modelo LP obteve os menores valores, exceto para S. brasiliensis, onde alcançou resultados ligeiramente mais alto que o modelo LOGITm. No presente estudo evidenciamos a similaridade entre os modelos LOGIT e LOGITm, pois, com exceção de L. obtusidens, as diferenças entre eles foram extremamente pequenas, não sendo representativas para estudos nesta escala. O modelo LP não apresentou mecanismos compensatórios como os modelos LOGIT e LOGITm, portanto, embora tenha obtido resultados piores no critério AIC, as consequentes melhorias quanto a estabilidade estatística, formato do campo dimensional e melhor capacidade preditiva em situações-limite justificam sua utilização.Made available in DSpace on 2015-04-14T13:09:32Z (GMT). No. of bitstreams: 1 438123.pdf: 5694232 bytes, checksum: 956a7d3f07932c396ce3d12f5376876e (MD5) Previous issue date: 2012-03-20application/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/6019/438123.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em ZoologiaPUCRSBRFaculdade de BiociênciasZOOLOGIAPEIXESMIGRAÇÃOPROBABILIDADESCNPQ::CIENCIAS BIOLOGICAS::ZOOLOGIARevisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis200892523190274115150060036528317262667714info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSTHUMBNAIL438123.pdf.jpg438123.pdf.jpgimage/jpeg3670http://tede2.pucrs.br/tede2/bitstream/tede/229/3/438123.pdf.jpgbe26860030f56f10993096f87b115b70MD53TEXT438123.pdf.txt438123.pdf.txttext/plain90555http://tede2.pucrs.br/tede2/bitstream/tede/229/2/438123.pdf.txt0e426020e2552aa8d8e11a7c38deca40MD52ORIGINAL438123.pdfapplication/pdf5694232http://tede2.pucrs.br/tede2/bitstream/tede/229/1/438123.pdf956a7d3f07932c396ce3d12f5376876eMD51tede/2292015-04-30 08:15:27.233oai:tede2.pucrs.br:tede/229Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2015-04-30T11:15:27Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.por.fl_str_mv Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
title Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
spellingShingle Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
Barradas, José Ricardo de Souza
ZOOLOGIA
PEIXES
MIGRAÇÃO
PROBABILIDADES
CNPQ::CIENCIAS BIOLOGICAS::ZOOLOGIA
title_short Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
title_full Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
title_fullStr Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
title_full_unstemmed Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
title_sort Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores
author Barradas, José Ricardo de Souza
author_facet Barradas, José Ricardo de Souza
author_role author
dc.contributor.advisor1.fl_str_mv Fontoura, Nelson Ferreira
dc.contributor.advisor1ID.fl_str_mv CPF:41378709004
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785565Y3
dc.contributor.authorID.fl_str_mv CPF:01191369021
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4258714Z7
dc.contributor.author.fl_str_mv Barradas, José Ricardo de Souza
contributor_str_mv Fontoura, Nelson Ferreira
dc.subject.por.fl_str_mv ZOOLOGIA
PEIXES
MIGRAÇÃO
PROBABILIDADES
topic ZOOLOGIA
PEIXES
MIGRAÇÃO
PROBABILIDADES
CNPQ::CIENCIAS BIOLOGICAS::ZOOLOGIA
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::ZOOLOGIA
description Given the limitations of the logit model, represented by the equation P = e(b0 + b1 x1 + b2 x2 + ... + bi xi) . (1 + e(b0 + b1 x1 + b2 x2 + ... + bi xi))-1, where: P is the probability of occurrence of the species (0-1), x1, x2 and xi are the environmental descriptors, b0, b1, b2 and bi are coefficients of the model calibration, and LOGITm, represented by the equation P = e(b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)) . (1 + e (b1 . (Altitude - PMFAltitude) + b2 . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), , b1 and b2 are coefficients related to altitude and basin area, respectively, and PMF is the point of changing phase of each parameter, as described in the literature for prediction of probability distribution of species in extreme situations due to compensatory mechanisms resulting from the design of these models, the goal of this study was to propose a new statistical model for the distribution of species of migratory fish and compare it with the models mentioned above. It was used the available database derived from the project PEIXES MIGRADORES E POTENCIAL HIDRELÉTRICO: GESTÃO INTEGRADA DA BACIA URUGUAI (RS/SC), which is composed of 167 points distributed throughout the Brazilian territory of the watershed. The model proposed in this study (Logistic Product - LP) is represented by the following equation: P = (1 b0) + b0 . (1 + e(TAXAAltitude . (Altitude PMFAltitude)))-1 . (1 + e(-TAXAÁrea de Bacia . (Área de Bacia PMFÁrea de Bacia)))-1, where: P is the probability of occurrence of the species (0-1), b0 is a fraction of the likelihood of unexplained by any of the descriptors; TAXA is a parameter indicative of the relative speed of change of absent/presence and PMF is the point of changing phase of each parameter. The models were adjusted for four species of migratory large Uruguay River basin: Leporinus obtusidens (piava), Prochilodus lineatus (grumatã) Pseudoplatystoma corruscans (pintado) and Salminus brasiliensis (dourado). The models were analyzed according to (1) adherence between their expected occurrence and estimated, (2) formats dimensional fields of the residual variance as a function of the variables altitude and basin area, (3) the formats dimensional fields of probability of occurrence in function of the variables altitude and basin area, and (4) through statistical criteria of Akaike Information Criterion (AIC) and Dimensional Stability Index (DSI), the latter being developed in this study and represented by the following equation: D.S.I. = (CvP1 . CvP2 . CvP3 . ... . CvPi )1/ i, where: CvP1, CvP2, CvP3, CvPi is the coefficient of variation for each parameter. The percentage of adherence obtained were generally around 80%, and, in general, the LP model showed adherence rates between 1% and 4% lower than the other models. The PMFAltitude obtained with the LP model were higher for all species, being 672 m for S. brasiliensis, 516 m for P. lineatus, 651 m for L. obtusidens and 509 m for P. corruscans. The PMFBasin Area were higher for the model LOGITm, except for P. lineatus, where the models LOGITm and LP had the same value (101 km2) and P. corruscans, where the LP model showed a value of 1623 km2 and LOGITm model showed a value of 709 km2. The fields of probability of occurrence for the LOGIT and LOGITm models for all species had the same general behavior in the form of an oblique cross-section sigmoid. However, the fields formed by the residual sum of squares (RSS) obtained with the model LOGITm for all species behaved like a "trough" of lower values of variance, indicating the same statistical quality ara a wide range of combinations of PMFaltitude and PMFBasin Area, which results in lack of stability of the fitting parameters. The LP model presented only one point of lower value of RSS in all settings, showing better stability of the final answer, however, the minimum value obtained was always a little higher than in other models. The fields of probability of occurrence showed that the LP model shows the interaction between environmental variables closer to the biological reality that LOGIT and LOGITm, not being checked the compensatory mechanisms presented in the models LOGIT and LOGITm. The LP model presented the highest values of AIC for all species, and 34.3 for S. brasiliensis, 35.0 for P. lineatus, 35.2 for L. obtusidens and 33.7 for P. corruscans.The model presented in this criterion is less suitable than others to describe the distribution of species. With the DSI method, however, the LP model obtained the lowest values, except for S. brasiliensis, which achieved results slightly higher than the model LOGITm. In the present study we noted the similarity between models LOGIT and LOGITm because, except for L.obtusidens, the differences between them were extremely small, not representative for the studies on this scale. The LP model showed no compensatory mechanisms such as the LOGIT and LOGITm, therefore, although the worst results obtained in the AIC criterion, the resulting improvements in the statistical stability, shape of dimensional field and better predictive ability in extreme situations justify its use.
publishDate 2012
dc.date.available.fl_str_mv 2012-05-03
dc.date.issued.fl_str_mv 2012-03-20
dc.date.accessioned.fl_str_mv 2015-04-14T13:09:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARRADAS, José Ricardo de Souza. Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores. 2012. 57 f. Dissertação (Mestrado em Zoologia) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2012.
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/229
identifier_str_mv BARRADAS, José Ricardo de Souza. Revisão de modelos probabilísticos de distribuição: uma aplicação para peixes migradores. 2012. 57 f. Dissertação (Mestrado em Zoologia) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2012.
url http://tede2.pucrs.br/tede2/handle/tede/229
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 2008925231902741151
dc.relation.confidence.fl_str_mv 500
600
dc.relation.department.fl_str_mv 36528317262667714
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Zoologia
dc.publisher.initials.fl_str_mv PUCRS
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Faculdade de Biociências
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
bitstream.url.fl_str_mv http://tede2.pucrs.br/tede2/bitstream/tede/229/3/438123.pdf.jpg
http://tede2.pucrs.br/tede2/bitstream/tede/229/2/438123.pdf.txt
http://tede2.pucrs.br/tede2/bitstream/tede/229/1/438123.pdf
bitstream.checksum.fl_str_mv be26860030f56f10993096f87b115b70
0e426020e2552aa8d8e11a7c38deca40
956a7d3f07932c396ce3d12f5376876e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1799765271132504064