Método de previsão de vendas e estimativa de reposição de itens no varejo da moda
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da PUC_RS |
Texto Completo: | http://tede2.pucrs.br/tede2/handle/tede/8171 |
Resumo: | Demand forecasting is one of the most essential components of supply chain management. Forecasts are used both for long-term and for short-term. Long-term forecasts are important because it is difficult in terms of production to face the demand deviation in a short time, so the anticipation of prediction helps to increase the responsiveness of the supply chain. Short term forecasts are important for the demand monitoring aiming to keep healthy inventory levels. In the fashion industry, the high change of products, the short life cycle and the lack of historical data makes difficult accurate predictions. To deal with this problem, the literature presents three approaches: statistical, artificial intelligence and hybrid that combines statistical and artificial intelligence. This research presents a two-phased method: (1) long-term prediction, identifies the different life cycles in the products, allowing the identification of sales prototypes for each cluster and (2) short-term prediction, classifies new products in the clusters labeled in the long-term phase and adjusts the sales curve considering optimistic and pessimist factors. As a differential, the method is based in dynamic time warping, distance measure for time series. The method is tested in a real dataset with real data from fashion retailers that demonstrates the quality of the contribution. |
id |
P_RS_2ff78197c0186678d347fa39aee4f06b |
---|---|
oai_identifier_str |
oai:tede2.pucrs.br:tede/8171 |
network_acronym_str |
P_RS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
repository_id_str |
|
spelling |
Ruiz, Duncan Dubugras Alcobahttp://lattes.cnpq.br/8250832800932125http://lattes.cnpq.br/0511455313062046Santos, Graziele Marques Mazuco dos2018-06-27T13:21:15Z2018-04-26http://tede2.pucrs.br/tede2/handle/tede/8171Demand forecasting is one of the most essential components of supply chain management. Forecasts are used both for long-term and for short-term. Long-term forecasts are important because it is difficult in terms of production to face the demand deviation in a short time, so the anticipation of prediction helps to increase the responsiveness of the supply chain. Short term forecasts are important for the demand monitoring aiming to keep healthy inventory levels. In the fashion industry, the high change of products, the short life cycle and the lack of historical data makes difficult accurate predictions. To deal with this problem, the literature presents three approaches: statistical, artificial intelligence and hybrid that combines statistical and artificial intelligence. This research presents a two-phased method: (1) long-term prediction, identifies the different life cycles in the products, allowing the identification of sales prototypes for each cluster and (2) short-term prediction, classifies new products in the clusters labeled in the long-term phase and adjusts the sales curve considering optimistic and pessimist factors. As a differential, the method is based in dynamic time warping, distance measure for time series. The method is tested in a real dataset with real data from fashion retailers that demonstrates the quality of the contribution.A previsão de vendas no varejo da moda é um problema complexo e um dos componentes essenciais da cadeia de suprimento, sendo utilizada tanto para previsão de longo prazo quanto para a previsão de curto prazo. A previsão de longo prazo é importante pois é difícil, em termos de produção, enfrentar o desvio da demanda em um curto espaço de tempo, então a previsão antecipada permite aumentar a capacidade de resposta da cadeia de suprimento. A previsão de curto prazo é importante para o acompanhamento da demanda, visando a adequação do nível de estoque. No varejo da moda a alta rotatividade, o curto ciclo de vida dos produtos e a consequente ausência de dados históricos dificulta a geração de previsões precisas. Para lidar com esse problema, há na literatura três principais abordagens: estatística, baseada em inteligência artificial e híbrida, que combina estatística e inteligência artificial. Esta pesquisa propõe um método de previsão de vendas em duas etapas: (1) previsão de longo prazo, que pretende detectar diferentes grupos de produtos com ciclos de vida semelhantes, permitindo assim a identificação do comportamento médio de cada um dos grupos e (2) previsão de curto prazo que busca associar os produtos novos nos grupos identificados na etapa de longo prazo e ajustar a curva de vendas levando em consideração fatores conservadores, otimistas ou pessimistas. Além disso, nesta etapa é possível realizar a previsão de reposição de itens. Como diferencial, o método proposto utiliza a medida de distância Dynamic Time Warping, identificada na literatura como adequada para lidar com séries temporais. O método é testado utilizando dois conjuntos de dados reais de varejistas da moda, foram realizados dois experimentos, que demonstram a qualidade da contribuição.Submitted by PPG Ciência da Computação (ppgcc@pucrs.br) on 2018-06-19T12:25:43Z No. of bitstreams: 1 GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf: 3857481 bytes, checksum: 9c3c88f01e8e5d920ba3bc8989d2cfbf (MD5)Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-06-27T13:05:50Z (GMT) No. of bitstreams: 1 GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf: 3857481 bytes, checksum: 9c3c88f01e8e5d920ba3bc8989d2cfbf (MD5)Made available in DSpace on 2018-06-27T13:21:15Z (GMT). No. of bitstreams: 1 GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf: 3857481 bytes, checksum: 9c3c88f01e8e5d920ba3bc8989d2cfbf (MD5) Previous issue date: 2018-04-26application/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/172646/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em Ciência da ComputaçãoPUCRSBrasilEscola PolitécnicaMineração de DadosSéries TemporaisPrevisão de VendasIndústria da ModaDynamic Time WarpingData MiningTime SeriesSales ForecastFashion IndustryCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOMétodo de previsão de vendas e estimativa de reposição de itens no varejo da modainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTrabalho não apresenta restrição para publicação1974996533081274470500500-862078257083325301info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSTHUMBNAILGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.jpgGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.jpgimage/jpeg4990http://tede2.pucrs.br/tede2/bitstream/tede/8171/4/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.jpge7dd3c1a7bf792ea729040d735b65bdaMD54TEXTGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.txtGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.txttext/plain303743http://tede2.pucrs.br/tede2/bitstream/tede/8171/3/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.txtb1dd5b05cc2c4d0fefc4584d27137de3MD53ORIGINALGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdfGRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdfapplication/pdf3857481http://tede2.pucrs.br/tede2/bitstream/tede/8171/2/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf9c3c88f01e8e5d920ba3bc8989d2cfbfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8610http://tede2.pucrs.br/tede2/bitstream/tede/8171/1/license.txt5a9d6006225b368ef605ba16b4f6d1beMD51tede/81712018-06-27 12:01:06.613oai:tede2.pucrs.br:tede/8171QXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBFbGV0csO0bmljYTogQ29tIGJhc2Ugbm8gZGlzcG9zdG8gbmEgTGVpIEZlZGVyYWwgbsK6OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYcOnw6NvIGVsZXRyw7RuaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsLCBzZWRpYWRhIGEgQXYuIElwaXJhbmdhIDY2ODEsIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIGNvbSByZWdpc3RybyBkZSBDTlBKIDg4NjMwNDEzMDAwMi04MSBiZW0gY29tbyBlbSBvdXRyYXMgYmlibGlvdGVjYXMgZGlnaXRhaXMsIG5hY2lvbmFpcyBlIGludGVybmFjaW9uYWlzLCBjb25zw7NyY2lvcyBlIHJlZGVzIMOgcyBxdWFpcyBhIGJpYmxpb3RlY2EgZGEgUFVDUlMgcG9zc2EgYSB2aXIgcGFydGljaXBhciwgc2VtIMO0bnVzIGFsdXNpdm8gYW9zIGRpcmVpdG9zIGF1dG9yYWlzLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-06-27T15:01:06Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.por.fl_str_mv |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
title |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
spellingShingle |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda Santos, Graziele Marques Mazuco dos Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
title_short |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
title_full |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
title_fullStr |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
title_full_unstemmed |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
title_sort |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
author |
Santos, Graziele Marques Mazuco dos |
author_facet |
Santos, Graziele Marques Mazuco dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Ruiz, Duncan Dubugras Alcoba |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8250832800932125 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0511455313062046 |
dc.contributor.author.fl_str_mv |
Santos, Graziele Marques Mazuco dos |
contributor_str_mv |
Ruiz, Duncan Dubugras Alcoba |
dc.subject.por.fl_str_mv |
Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda |
topic |
Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
description |
Demand forecasting is one of the most essential components of supply chain management. Forecasts are used both for long-term and for short-term. Long-term forecasts are important because it is difficult in terms of production to face the demand deviation in a short time, so the anticipation of prediction helps to increase the responsiveness of the supply chain. Short term forecasts are important for the demand monitoring aiming to keep healthy inventory levels. In the fashion industry, the high change of products, the short life cycle and the lack of historical data makes difficult accurate predictions. To deal with this problem, the literature presents three approaches: statistical, artificial intelligence and hybrid that combines statistical and artificial intelligence. This research presents a two-phased method: (1) long-term prediction, identifies the different life cycles in the products, allowing the identification of sales prototypes for each cluster and (2) short-term prediction, classifies new products in the clusters labeled in the long-term phase and adjusts the sales curve considering optimistic and pessimist factors. As a differential, the method is based in dynamic time warping, distance measure for time series. The method is tested in a real dataset with real data from fashion retailers that demonstrates the quality of the contribution. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-06-27T13:21:15Z |
dc.date.issued.fl_str_mv |
2018-04-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/8171 |
url |
http://tede2.pucrs.br/tede2/handle/tede/8171 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
1974996533081274470 |
dc.relation.confidence.fl_str_mv |
500 500 |
dc.relation.cnpq.fl_str_mv |
-862078257083325301 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
PUCRS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola Politécnica |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
bitstream.url.fl_str_mv |
http://tede2.pucrs.br/tede2/bitstream/tede/8171/4/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.jpg http://tede2.pucrs.br/tede2/bitstream/tede/8171/3/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf.txt http://tede2.pucrs.br/tede2/bitstream/tede/8171/2/GRAZIELE_MARQUES_MAZUCO_DOS_SANTOS_DIS.pdf http://tede2.pucrs.br/tede2/bitstream/tede/8171/1/license.txt |
bitstream.checksum.fl_str_mv |
e7dd3c1a7bf792ea729040d735b65bda b1dd5b05cc2c4d0fefc4584d27137de3 9c3c88f01e8e5d920ba3bc8989d2cfbf 5a9d6006225b368ef605ba16b4f6d1be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
_version_ |
1799765334688792576 |