Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da PUC_RS |
Texto Completo: | http://tede2.pucrs.br/tede2/handle/tede/9437 |
Resumo: | Density currents are flows resulting from a pressure gradient generated by variations in buoyant forces between two fluids that come into contact. The propagation of these flows promotes the formation of different internal regions, such as a frontal region known as the head, a region upstream of the head called the body and a posterior region referred to as the tail. The head of a density stream is a region of strong velocity gradients, responsible for much of the fluid entrainment in the current and also has heterogeneities at its most downstream point known as lobe and cleft structures. In this work a mathematical model is presented that allows to perform numerical simulations of the head of a density current in sufficiently long times with a reduced computational cost. Such mathematical model is based on the coupling of a moving frame in the coordinate system that corresponds to changes in the transport terms of the Navier-Stokes equations and scalar transport and in the boundary conditions of the problem. Based on this mathematical model and using the computational code Incompact3d, Direct Numerical Simulations and Large Eddy Simulations were performed first to verify the validity of the proposed model and later to seek more information about the behavior of the head of a density current over long time periods and on the origin of the lobe and cleft structures. As results of the validation basis of the proposed model, numerical simulations were performed in the flow configuration known in the literature as lock-exchange and also considered empirical relationships available in the literature. From the results obtained with the proposed mathematical model, it was observed that in longer periods of time the density current does not present the formation of new Kelvin-Helmholtz vortices and the lobe and cleft structures have a width that, on average, grows as a function of the head Reynolds number, a behavior that it is the exact opposite of what is documented in the literature of experimental approaches. Based on the Linear Stability Theory, it was concluded that the lobe and cleft structures are originated by the development of gravitational instabilities, of the Rayleigh-Taylor type, associated with the region of unstable stratification at the point further down the head of the density current. |
id |
P_RS_8ac6fb5e094359b98ac17b7a357c0f51 |
---|---|
oai_identifier_str |
oai:tede2.pucrs.br:tede/9437 |
network_acronym_str |
P_RS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
repository_id_str |
|
spelling |
Silvestrini, Jorge HugoFarenzena, Bruno Avila2020-11-24T18:18:07Z2020-03-27http://tede2.pucrs.br/tede2/handle/tede/9437Density currents are flows resulting from a pressure gradient generated by variations in buoyant forces between two fluids that come into contact. The propagation of these flows promotes the formation of different internal regions, such as a frontal region known as the head, a region upstream of the head called the body and a posterior region referred to as the tail. The head of a density stream is a region of strong velocity gradients, responsible for much of the fluid entrainment in the current and also has heterogeneities at its most downstream point known as lobe and cleft structures. In this work a mathematical model is presented that allows to perform numerical simulations of the head of a density current in sufficiently long times with a reduced computational cost. Such mathematical model is based on the coupling of a moving frame in the coordinate system that corresponds to changes in the transport terms of the Navier-Stokes equations and scalar transport and in the boundary conditions of the problem. Based on this mathematical model and using the computational code Incompact3d, Direct Numerical Simulations and Large Eddy Simulations were performed first to verify the validity of the proposed model and later to seek more information about the behavior of the head of a density current over long time periods and on the origin of the lobe and cleft structures. As results of the validation basis of the proposed model, numerical simulations were performed in the flow configuration known in the literature as lock-exchange and also considered empirical relationships available in the literature. From the results obtained with the proposed mathematical model, it was observed that in longer periods of time the density current does not present the formation of new Kelvin-Helmholtz vortices and the lobe and cleft structures have a width that, on average, grows as a function of the head Reynolds number, a behavior that it is the exact opposite of what is documented in the literature of experimental approaches. Based on the Linear Stability Theory, it was concluded that the lobe and cleft structures are originated by the development of gravitational instabilities, of the Rayleigh-Taylor type, associated with the region of unstable stratification at the point further down the head of the density current.Correntes de densidade são escoamentos resultantes de um gradiente de pressão gerado por variações de forças de empuxo entre dois fluidos que entram em contato. A propagação destes escoamentos promove a formação de diferentes regiões internas, tais como uma região frontal conhecida como cabeça, uma região à montante da cabeça chamada de corpo e uma região posterior referida como cauda. A cabeça de uma corrente de densidade é uma região de fortes gradientes de velocidade, responsável por grande parte do entranhamento de fluido na corrente e também possui heterogeneidades em seu ponto mais à jusante conhecidas como estruturas de lobos e fendas. Neste trabalho é apresentado um modelo matemático que permite realizar simulações numéricas da cabeça de uma corrente de densidade em tempos suficientemente longos com um custo computacional reduzido. Tal modelo matemático é baseado no acoplamento de um referencial móvel no sistema de coordenadas que corresponde a modificações nos termos de transporte das equações de Navier-Stokes e de transporte escalar e nas condições de contorno do problema. Com base neste modelo matemático e utilizando o código computacional Incompact3d, Simulações Numéricas Diretas e Simulações de Grandes Escalas foram realizadas primeiramente para verificar a validade do modelo proposto e posteriormente para buscar mais informações a respeito do comportamento da cabeça de uma corrente de densidade em longos períodos de tempo e sobre a origem das estruturas de lobos e fendas. Como resultados de base de validação do modelo proposto, foram realizadas simulações na configuração de escoamento conhecida na literatura como lockexchange e também considerou-se relações empíricas disponíveis na literatura. A partir dos resultados obtidos com o modelo matemático proposto, foi observado que em períodos de tempo mais longos a corrente de densidade não apresenta a formação de novos vórtices de Kelvin-Helmholtz e as estruturas de lobos e fendas possuem largura que, em média, cresce em função do número de Reynolds da cabeça da corrente, comportamento que é exatamente o oposto do que esta documentado na literatura de abordagens experimentais. Com base na Teoria da Estabilidade Linear, foi concluído que as estruturas de lobos e fendas são originadas pelo desenvolvimento de instabilidades gravitacionais, do tipo Rayleigh-Taylor, associadas à região de estratificação instável no ponto mais à jusante da cabeça da corrente de densidade.Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2020-11-12T19:10:23Z No. of bitstreams: 1 Tese - Bruno Avila Farenzena.pdf: 5267667 bytes, checksum: 6eba2e93ea7c17ffc1f962298e069489 (MD5)Rejected by Caroline Xavier (caroline.xavier@pucrs.br), reason: Devolvido devido à falta de capa institucional no arquivo PDF. on 2020-11-23T19:23:03Z (GMT)Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2020-11-24T18:10:28Z No. of bitstreams: 1 Tese - Bruno Avila Farenzena.pdf: 5267633 bytes, checksum: 2435f2286f8b7dd8eff8704642454b9b (MD5)Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2020-11-24T18:15:58Z (GMT) No. of bitstreams: 1 Tese - Bruno Avila Farenzena.pdf: 5267633 bytes, checksum: 2435f2286f8b7dd8eff8704642454b9b (MD5)Made available in DSpace on 2020-11-24T18:18:07Z (GMT). No. of bitstreams: 1 Tese - Bruno Avila Farenzena.pdf: 5267633 bytes, checksum: 2435f2286f8b7dd8eff8704642454b9b (MD5) Previous issue date: 2020-03-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/179648/Tese%20-%20Bruno%20Avila%20Farenzena.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em Engenharia e Tecnologia de MateriaisPUCRSBrasilEscola PolitécnicaCorrentes de DensidadeEscoamento HiperpicnalReferencial MóvelDensity CurrentsHyperpycnal FlowMoving FrameENGENHARIASSimulação numérica de correntes de densidade hiperpicnais sob referencial móvelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTrabalho não apresenta restrição para publicação495391460509391966550050060045189710564848268253590462550136975366info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSTHUMBNAILTese - Bruno Avila Farenzena.pdf.jpgTese - Bruno Avila Farenzena.pdf.jpgimage/jpeg4849http://tede2.pucrs.br/tede2/bitstream/tede/9437/6/Tese+-+Bruno+Avila+Farenzena.pdf.jpgbfcab59b88ab09d5412465c092c796acMD56TEXTTese - Bruno Avila Farenzena.pdf.txtTese - Bruno Avila Farenzena.pdf.txttext/plain201444http://tede2.pucrs.br/tede2/bitstream/tede/9437/5/Tese+-+Bruno+Avila+Farenzena.pdf.txt85eebf7c47b5ea95cd79633f620a40aaMD55ORIGINALTese - Bruno Avila Farenzena.pdfTese - Bruno Avila Farenzena.pdfapplication/pdf5267633http://tede2.pucrs.br/tede2/bitstream/tede/9437/4/Tese+-+Bruno+Avila+Farenzena.pdf2435f2286f8b7dd8eff8704642454b9bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8590http://tede2.pucrs.br/tede2/bitstream/tede/9437/3/license.txt220e11f2d3ba5354f917c7035aadef24MD53tede/94372020-11-24 20:00:22.356oai:tede2.pucrs.br:tede/9437QXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIEVsZXRyP25pY2E6IENvbSBiYXNlIG5vIGRpc3Bvc3RvIG5hIExlaSBGZWRlcmFsIG4/OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYT8/byBlbGV0cj9uaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWY/Y2lhIFVuaXZlcnNpZGFkZSBDYXQ/bGljYSBkbyBSaW8gR3JhbmRlIGRvIFN1bCwgc2VkaWFkYSBhIEF2LiBJcGlyYW5nYSA2NjgxLCBQb3J0byBBbGVncmUsIFJpbyBHcmFuZGUgZG8gU3VsLCBjb20gcmVnaXN0cm8gZGUgQ05QSiA4ODYzMDQxMzAwMDItODEgYmVtIGNvbW8gZW0gb3V0cmFzIGJpYmxpb3RlY2FzIGRpZ2l0YWlzLCBuYWNpb25haXMgZSBpbnRlcm5hY2lvbmFpcywgY29ucz9yY2lvcyBlIHJlZGVzID9zIHF1YWlzIGEgYmlibGlvdGVjYSBkYSBQVUNSUyBwb3NzYSBhIHZpciBwYXJ0aWNpcGFyLCBzZW0gP251cyBhbHVzaXZvIGFvcyBkaXJlaXRvcyBhdXRvcmFpcywgYSB0P3R1bG8gZGUgZGl2dWxnYT8/byBkYSBwcm9kdT8/byBjaWVudD9maWNhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2020-11-24T22:00:22Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.por.fl_str_mv |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
title |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
spellingShingle |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel Farenzena, Bruno Avila Correntes de Densidade Escoamento Hiperpicnal Referencial Móvel Density Currents Hyperpycnal Flow Moving Frame ENGENHARIAS |
title_short |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
title_full |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
title_fullStr |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
title_full_unstemmed |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
title_sort |
Simulação numérica de correntes de densidade hiperpicnais sob referencial móvel |
author |
Farenzena, Bruno Avila |
author_facet |
Farenzena, Bruno Avila |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Silvestrini, Jorge Hugo |
dc.contributor.author.fl_str_mv |
Farenzena, Bruno Avila |
contributor_str_mv |
Silvestrini, Jorge Hugo |
dc.subject.por.fl_str_mv |
Correntes de Densidade Escoamento Hiperpicnal Referencial Móvel |
topic |
Correntes de Densidade Escoamento Hiperpicnal Referencial Móvel Density Currents Hyperpycnal Flow Moving Frame ENGENHARIAS |
dc.subject.eng.fl_str_mv |
Density Currents Hyperpycnal Flow Moving Frame |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS |
description |
Density currents are flows resulting from a pressure gradient generated by variations in buoyant forces between two fluids that come into contact. The propagation of these flows promotes the formation of different internal regions, such as a frontal region known as the head, a region upstream of the head called the body and a posterior region referred to as the tail. The head of a density stream is a region of strong velocity gradients, responsible for much of the fluid entrainment in the current and also has heterogeneities at its most downstream point known as lobe and cleft structures. In this work a mathematical model is presented that allows to perform numerical simulations of the head of a density current in sufficiently long times with a reduced computational cost. Such mathematical model is based on the coupling of a moving frame in the coordinate system that corresponds to changes in the transport terms of the Navier-Stokes equations and scalar transport and in the boundary conditions of the problem. Based on this mathematical model and using the computational code Incompact3d, Direct Numerical Simulations and Large Eddy Simulations were performed first to verify the validity of the proposed model and later to seek more information about the behavior of the head of a density current over long time periods and on the origin of the lobe and cleft structures. As results of the validation basis of the proposed model, numerical simulations were performed in the flow configuration known in the literature as lock-exchange and also considered empirical relationships available in the literature. From the results obtained with the proposed mathematical model, it was observed that in longer periods of time the density current does not present the formation of new Kelvin-Helmholtz vortices and the lobe and cleft structures have a width that, on average, grows as a function of the head Reynolds number, a behavior that it is the exact opposite of what is documented in the literature of experimental approaches. Based on the Linear Stability Theory, it was concluded that the lobe and cleft structures are originated by the development of gravitational instabilities, of the Rayleigh-Taylor type, associated with the region of unstable stratification at the point further down the head of the density current. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-24T18:18:07Z |
dc.date.issued.fl_str_mv |
2020-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/9437 |
url |
http://tede2.pucrs.br/tede2/handle/tede/9437 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
4953914605093919665 |
dc.relation.confidence.fl_str_mv |
500 500 600 |
dc.relation.cnpq.fl_str_mv |
4518971056484826825 |
dc.relation.sponsorship.fl_str_mv |
3590462550136975366 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais |
dc.publisher.initials.fl_str_mv |
PUCRS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola Politécnica |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
bitstream.url.fl_str_mv |
http://tede2.pucrs.br/tede2/bitstream/tede/9437/6/Tese+-+Bruno+Avila+Farenzena.pdf.jpg http://tede2.pucrs.br/tede2/bitstream/tede/9437/5/Tese+-+Bruno+Avila+Farenzena.pdf.txt http://tede2.pucrs.br/tede2/bitstream/tede/9437/4/Tese+-+Bruno+Avila+Farenzena.pdf http://tede2.pucrs.br/tede2/bitstream/tede/9437/3/license.txt |
bitstream.checksum.fl_str_mv |
bfcab59b88ab09d5412465c092c796ac 85eebf7c47b5ea95cd79633f620a40aa 2435f2286f8b7dd8eff8704642454b9b 220e11f2d3ba5354f917c7035aadef24 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
_version_ |
1799765347600957440 |