Filogenômica do gênero Panthera (mammalia, felidae)

Detalhes bibliográficos
Autor(a) principal: Santos, Sarah Helen Dias dos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da PUC_RS
Texto Completo: http://tede2.pucrs.br/tede2/handle/tede/8747
Resumo: The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches.
id P_RS_9b406dfecc22a57d97caf64ee434c8eb
oai_identifier_str oai:tede2.pucrs.br:tede/8747
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Eizirik, Eduardohttp://lattes.cnpq.br/3626004211018550http://lattes.cnpq.br/1235637399279833Santos, Sarah Helen Dias dos2019-06-25T12:08:16Z2019-03-27http://tede2.pucrs.br/tede2/handle/tede/8747The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches.A história evolutiva das espécies, especialmente aquelas derivadas de radiações rápidas e recentes, é frequentemente incorporada em uma complexa rede de processos de fluxo gênico ancestral. Essa história complexa, associada à natureza estocástica da segregação incompleta de linhagens (incomplete lineage sorting – ILS), apresenta desafios para a reconstrução de suas relações filogenéticas, mesmo com o uso de dados de sequência de genoma completo (wgs). Vários estudos abordaram as relações evolutivas entre as cinco espécies existentes de Panthera e análises recentes revelaram uma extensa discordância genealógica neste grupo, tornando difícil discernir qual topologia reflete a sequência original dos eventos de especiação. Até o momento, estudos filogenômicos de Panthera empregando dados de wgs incluíram um único indivíduo por espécie, o que impede uma avaliação da replicabilidade de padrões topológicos quando o representante é alterado. Nesse estudo, empregamos um conjunto de dados wgs de Panthera, incorporando três genomas de onça-pintada (dois dos quais são novos), juntamente com dois representantes de leões e leopardos, para dissecar as relações entre essas três espécies. Nós testamos a monofilia de cada um deles e investigamos seus padrões de discordância genealógica. Avaliamos inicialmente a frequência de cada uma das três topologias alternativas ao longo de seus genomas, dividindo o alinhamento em janelas de quatro tamanhos diferentes (50 kb, 100 kb, 1 Mb e 5 Mb) e reconstruindo a filogenia de máxima verossimilhança (maximum likelihood – ML) (testada com bootstrapping não paramétrico) para cada janela. As filogenias de ML apoiadas foram então plotadas ao longo do genoma e a frequência de cada topologia foi avaliada em relação à taxa de recombinação do respectivo segmento genômico. Usando janelas de 100 kb, também estimamos tempos de divergência entre as duas espécies-irmãs definidas por cada topologia, bem como uma 'idade normalizada' em que a profundidade do nó de espéciesirmãs foi dividida pela do nó anterior (trio), para corrigir ainda mais possíveis efeitos da taxa de recombinação. Essas mesmas janelas foram utilizadas para identificar e mapear eventos de introgressão ao longo do genoma, assumindo topologias diferentes como a "árvore de espécies". A monofilia em nível genômico para todas as três espécies testadas foi fortemente apoiada e um padrão claro foi observado quanto às suas relações filogenéticas: com todos os tamanhos de janela, a topologia mais frequente é leão+leopardo como espécies-irmã (topologia 1: 76% - 95%), seguida de leão+onçapintada (topologia 2: 4% - 8%) e leopardo+onça-pintada (topologia 3: 1% - 6%). A topologia 1 foi fortemente predominante em regiões de alta recombinação, i.e. segmentos cromossômicos terminais, enquanto as topologias 2 e 3 foram fortemente enriquecidas 3 em regiões de baixa recombinação, especialmente em segmentos centroméricos. Os tempos de divergência absoluta foram menores para as topologias 2 e 3 (em relação à topologia 1) tanto em autossomos como no cromossomo X, mas esse padrão foi revertido quando "normalizamos" a profundidade do nó terminal usando a idade do nó anterior (trio). As análises de introgressão indicaram uma extensa miscigenação histórica entre essas espécies, independentemente da árvore de espécies assumida. Por exemplo, sendo a topologia 1 assumida, 5% do genoma apresenta sinal de hibridização leão-onça, enquanto que se a topologia 2 ou 3 for assumida, 35% do genoma é detectado como sendo introgredido entre leão e leopardo. De forma geral, nossos resultados indicam que a topologia 2 (leão+onça) provavelmente reflete a relação de especiação original, dada sua idade, frequência e perfil de recombinação. A topologia leopardo+onça não diferiu significativamente em idade ou perfil de recombinação e, portanto, provavelmente deriva de ILS. Notavelmente, estes resultados implicam que uma grande proporção do genoma foi sobrescrita pela miscigenação pós-especiação entre leão e leopardo, levando a um mosaico complexo cuja resolução filogenética requer integração entre diferentes abordagens.Submitted by PPG Ecologia e Evolução da Biodiversidade (eebpg.ciencias@pucrs.br) on 2019-06-12T12:32:45Z No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5)Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2019-06-25T12:02:55Z (GMT) No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5)Made available in DSpace on 2019-06-25T12:08:16Z (GMT). No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5) Previous issue date: 2019-03-27Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/175699/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós Graduação em Ecologia e Evolução da BiodiversidadePUCRSBrasilEscola de CiênciasFilogenômicaHibridaçãoIntrogressãoEspeciaçãoFelidaePhylogenomicsHybridizationIntrogressionSpeciationCIENCIAS BIOLOGICAS::ZOOLOGIAFilogenômica do gênero Panthera (mammalia, felidae)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTrabalho será publicado como artigo ou livro36 meses25/06/2024-64826523806012675585006001802873727776104890info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSORIGINALDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfapplication/pdf263083https://tede2.pucrs.br/tede2/bitstream/tede/8747/5/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfb3f961354cce1bf459d2efe9317a2d8fMD55THUMBNAILDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgimage/jpeg4078https://tede2.pucrs.br/tede2/bitstream/tede/8747/4/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpg6c8852c023ea3bb3bbde5f95bc4b69d0MD54TEXTDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txtDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txttext/plain1334https://tede2.pucrs.br/tede2/bitstream/tede/8747/3/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txt8d5d2801c91278b45b4d97becc0571e1MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8590https://tede2.pucrs.br/tede2/bitstream/tede/8747/1/license.txt220e11f2d3ba5354f917c7035aadef24MD51tede/87472022-05-26 09:33:33.3oai:tede2.pucrs.br:tede/8747QXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIEVsZXRyP25pY2E6IENvbSBiYXNlIG5vIGRpc3Bvc3RvIG5hIExlaSBGZWRlcmFsIG4/OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYT8/byBlbGV0cj9uaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWY/Y2lhIFVuaXZlcnNpZGFkZSBDYXQ/bGljYSBkbyBSaW8gR3JhbmRlIGRvIFN1bCwgc2VkaWFkYSBhIEF2LiBJcGlyYW5nYSA2NjgxLCBQb3J0byBBbGVncmUsIFJpbyBHcmFuZGUgZG8gU3VsLCBjb20gcmVnaXN0cm8gZGUgQ05QSiA4ODYzMDQxMzAwMDItODEgYmVtIGNvbW8gZW0gb3V0cmFzIGJpYmxpb3RlY2FzIGRpZ2l0YWlzLCBuYWNpb25haXMgZSBpbnRlcm5hY2lvbmFpcywgY29ucz9yY2lvcyBlIHJlZGVzID9zIHF1YWlzIGEgYmlibGlvdGVjYSBkYSBQVUNSUyBwb3NzYSBhIHZpciBwYXJ0aWNpcGFyLCBzZW0gP251cyBhbHVzaXZvIGFvcyBkaXJlaXRvcyBhdXRvcmFpcywgYSB0P3R1bG8gZGUgZGl2dWxnYT8/byBkYSBwcm9kdT8/byBjaWVudD9maWNhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2022-05-26T12:33:33Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.por.fl_str_mv Filogenômica do gênero Panthera (mammalia, felidae)
title Filogenômica do gênero Panthera (mammalia, felidae)
spellingShingle Filogenômica do gênero Panthera (mammalia, felidae)
Santos, Sarah Helen Dias dos
Filogenômica
Hibridação
Introgressão
Especiação
Felidae
Phylogenomics
Hybridization
Introgression
Speciation
CIENCIAS BIOLOGICAS::ZOOLOGIA
title_short Filogenômica do gênero Panthera (mammalia, felidae)
title_full Filogenômica do gênero Panthera (mammalia, felidae)
title_fullStr Filogenômica do gênero Panthera (mammalia, felidae)
title_full_unstemmed Filogenômica do gênero Panthera (mammalia, felidae)
title_sort Filogenômica do gênero Panthera (mammalia, felidae)
author Santos, Sarah Helen Dias dos
author_facet Santos, Sarah Helen Dias dos
author_role author
dc.contributor.advisor1.fl_str_mv Eizirik, Eduardo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3626004211018550
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1235637399279833
dc.contributor.author.fl_str_mv Santos, Sarah Helen Dias dos
contributor_str_mv Eizirik, Eduardo
dc.subject.por.fl_str_mv Filogenômica
Hibridação
Introgressão
Especiação
topic Filogenômica
Hibridação
Introgressão
Especiação
Felidae
Phylogenomics
Hybridization
Introgression
Speciation
CIENCIAS BIOLOGICAS::ZOOLOGIA
dc.subject.eng.fl_str_mv Felidae
Phylogenomics
Hybridization
Introgression
Speciation
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::ZOOLOGIA
description The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-06-25T12:08:16Z
dc.date.issued.fl_str_mv 2019-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/8747
url http://tede2.pucrs.br/tede2/handle/tede/8747
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv -6482652380601267558
dc.relation.confidence.fl_str_mv 500
600
dc.relation.sponsorship.fl_str_mv 1802873727776104890
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.publisher.program.fl_str_mv Programa de Pós Graduação em Ecologia e Evolução da Biodiversidade
dc.publisher.initials.fl_str_mv PUCRS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Ciências
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
bitstream.url.fl_str_mv https://tede2.pucrs.br/tede2/bitstream/tede/8747/5/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf
https://tede2.pucrs.br/tede2/bitstream/tede/8747/4/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpg
https://tede2.pucrs.br/tede2/bitstream/tede/8747/3/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txt
https://tede2.pucrs.br/tede2/bitstream/tede/8747/1/license.txt
bitstream.checksum.fl_str_mv b3f961354cce1bf459d2efe9317a2d8f
6c8852c023ea3bb3bbde5f95bc4b69d0
8d5d2801c91278b45b4d97becc0571e1
220e11f2d3ba5354f917c7035aadef24
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1799765340458057728