Filogenômica do gênero Panthera (mammalia, felidae)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da PUC_RS |
Texto Completo: | http://tede2.pucrs.br/tede2/handle/tede/8747 |
Resumo: | The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches. |
id |
P_RS_9b406dfecc22a57d97caf64ee434c8eb |
---|---|
oai_identifier_str |
oai:tede2.pucrs.br:tede/8747 |
network_acronym_str |
P_RS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
repository_id_str |
|
spelling |
Eizirik, Eduardohttp://lattes.cnpq.br/3626004211018550http://lattes.cnpq.br/1235637399279833Santos, Sarah Helen Dias dos2019-06-25T12:08:16Z2019-03-27http://tede2.pucrs.br/tede2/handle/tede/8747The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches.A história evolutiva das espécies, especialmente aquelas derivadas de radiações rápidas e recentes, é frequentemente incorporada em uma complexa rede de processos de fluxo gênico ancestral. Essa história complexa, associada à natureza estocástica da segregação incompleta de linhagens (incomplete lineage sorting – ILS), apresenta desafios para a reconstrução de suas relações filogenéticas, mesmo com o uso de dados de sequência de genoma completo (wgs). Vários estudos abordaram as relações evolutivas entre as cinco espécies existentes de Panthera e análises recentes revelaram uma extensa discordância genealógica neste grupo, tornando difícil discernir qual topologia reflete a sequência original dos eventos de especiação. Até o momento, estudos filogenômicos de Panthera empregando dados de wgs incluíram um único indivíduo por espécie, o que impede uma avaliação da replicabilidade de padrões topológicos quando o representante é alterado. Nesse estudo, empregamos um conjunto de dados wgs de Panthera, incorporando três genomas de onça-pintada (dois dos quais são novos), juntamente com dois representantes de leões e leopardos, para dissecar as relações entre essas três espécies. Nós testamos a monofilia de cada um deles e investigamos seus padrões de discordância genealógica. Avaliamos inicialmente a frequência de cada uma das três topologias alternativas ao longo de seus genomas, dividindo o alinhamento em janelas de quatro tamanhos diferentes (50 kb, 100 kb, 1 Mb e 5 Mb) e reconstruindo a filogenia de máxima verossimilhança (maximum likelihood – ML) (testada com bootstrapping não paramétrico) para cada janela. As filogenias de ML apoiadas foram então plotadas ao longo do genoma e a frequência de cada topologia foi avaliada em relação à taxa de recombinação do respectivo segmento genômico. Usando janelas de 100 kb, também estimamos tempos de divergência entre as duas espécies-irmãs definidas por cada topologia, bem como uma 'idade normalizada' em que a profundidade do nó de espéciesirmãs foi dividida pela do nó anterior (trio), para corrigir ainda mais possíveis efeitos da taxa de recombinação. Essas mesmas janelas foram utilizadas para identificar e mapear eventos de introgressão ao longo do genoma, assumindo topologias diferentes como a "árvore de espécies". A monofilia em nível genômico para todas as três espécies testadas foi fortemente apoiada e um padrão claro foi observado quanto às suas relações filogenéticas: com todos os tamanhos de janela, a topologia mais frequente é leão+leopardo como espécies-irmã (topologia 1: 76% - 95%), seguida de leão+onçapintada (topologia 2: 4% - 8%) e leopardo+onça-pintada (topologia 3: 1% - 6%). A topologia 1 foi fortemente predominante em regiões de alta recombinação, i.e. segmentos cromossômicos terminais, enquanto as topologias 2 e 3 foram fortemente enriquecidas 3 em regiões de baixa recombinação, especialmente em segmentos centroméricos. Os tempos de divergência absoluta foram menores para as topologias 2 e 3 (em relação à topologia 1) tanto em autossomos como no cromossomo X, mas esse padrão foi revertido quando "normalizamos" a profundidade do nó terminal usando a idade do nó anterior (trio). As análises de introgressão indicaram uma extensa miscigenação histórica entre essas espécies, independentemente da árvore de espécies assumida. Por exemplo, sendo a topologia 1 assumida, 5% do genoma apresenta sinal de hibridização leão-onça, enquanto que se a topologia 2 ou 3 for assumida, 35% do genoma é detectado como sendo introgredido entre leão e leopardo. De forma geral, nossos resultados indicam que a topologia 2 (leão+onça) provavelmente reflete a relação de especiação original, dada sua idade, frequência e perfil de recombinação. A topologia leopardo+onça não diferiu significativamente em idade ou perfil de recombinação e, portanto, provavelmente deriva de ILS. Notavelmente, estes resultados implicam que uma grande proporção do genoma foi sobrescrita pela miscigenação pós-especiação entre leão e leopardo, levando a um mosaico complexo cuja resolução filogenética requer integração entre diferentes abordagens.Submitted by PPG Ecologia e Evolução da Biodiversidade (eebpg.ciencias@pucrs.br) on 2019-06-12T12:32:45Z No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5)Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2019-06-25T12:02:55Z (GMT) No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5)Made available in DSpace on 2019-06-25T12:08:16Z (GMT). No. of bitstreams: 1 Sarah_Santos_Dissertacao_de_Mestrado.pdf: 7773050 bytes, checksum: a92ea4bd170c4699327b7c193681528e (MD5) Previous issue date: 2019-03-27Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/175699/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós Graduação em Ecologia e Evolução da BiodiversidadePUCRSBrasilEscola de CiênciasFilogenômicaHibridaçãoIntrogressãoEspeciaçãoFelidaePhylogenomicsHybridizationIntrogressionSpeciationCIENCIAS BIOLOGICAS::ZOOLOGIAFilogenômica do gênero Panthera (mammalia, felidae)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTrabalho será publicado como artigo ou livro36 meses25/06/2024-64826523806012675585006001802873727776104890info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSORIGINALDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfapplication/pdf263083https://tede2.pucrs.br/tede2/bitstream/tede/8747/5/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdfb3f961354cce1bf459d2efe9317a2d8fMD55THUMBNAILDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpgimage/jpeg4078https://tede2.pucrs.br/tede2/bitstream/tede/8747/4/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpg6c8852c023ea3bb3bbde5f95bc4b69d0MD54TEXTDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txtDIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txttext/plain1334https://tede2.pucrs.br/tede2/bitstream/tede/8747/3/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txt8d5d2801c91278b45b4d97becc0571e1MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8590https://tede2.pucrs.br/tede2/bitstream/tede/8747/1/license.txt220e11f2d3ba5354f917c7035aadef24MD51tede/87472022-05-26 09:33:33.3oai:tede2.pucrs.br:tede/8747QXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIEVsZXRyP25pY2E6IENvbSBiYXNlIG5vIGRpc3Bvc3RvIG5hIExlaSBGZWRlcmFsIG4/OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYT8/byBlbGV0cj9uaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWY/Y2lhIFVuaXZlcnNpZGFkZSBDYXQ/bGljYSBkbyBSaW8gR3JhbmRlIGRvIFN1bCwgc2VkaWFkYSBhIEF2LiBJcGlyYW5nYSA2NjgxLCBQb3J0byBBbGVncmUsIFJpbyBHcmFuZGUgZG8gU3VsLCBjb20gcmVnaXN0cm8gZGUgQ05QSiA4ODYzMDQxMzAwMDItODEgYmVtIGNvbW8gZW0gb3V0cmFzIGJpYmxpb3RlY2FzIGRpZ2l0YWlzLCBuYWNpb25haXMgZSBpbnRlcm5hY2lvbmFpcywgY29ucz9yY2lvcyBlIHJlZGVzID9zIHF1YWlzIGEgYmlibGlvdGVjYSBkYSBQVUNSUyBwb3NzYSBhIHZpciBwYXJ0aWNpcGFyLCBzZW0gP251cyBhbHVzaXZvIGFvcyBkaXJlaXRvcyBhdXRvcmFpcywgYSB0P3R1bG8gZGUgZGl2dWxnYT8/byBkYSBwcm9kdT8/byBjaWVudD9maWNhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2022-05-26T12:33:33Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.por.fl_str_mv |
Filogenômica do gênero Panthera (mammalia, felidae) |
title |
Filogenômica do gênero Panthera (mammalia, felidae) |
spellingShingle |
Filogenômica do gênero Panthera (mammalia, felidae) Santos, Sarah Helen Dias dos Filogenômica Hibridação Introgressão Especiação Felidae Phylogenomics Hybridization Introgression Speciation CIENCIAS BIOLOGICAS::ZOOLOGIA |
title_short |
Filogenômica do gênero Panthera (mammalia, felidae) |
title_full |
Filogenômica do gênero Panthera (mammalia, felidae) |
title_fullStr |
Filogenômica do gênero Panthera (mammalia, felidae) |
title_full_unstemmed |
Filogenômica do gênero Panthera (mammalia, felidae) |
title_sort |
Filogenômica do gênero Panthera (mammalia, felidae) |
author |
Santos, Sarah Helen Dias dos |
author_facet |
Santos, Sarah Helen Dias dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Eizirik, Eduardo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3626004211018550 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1235637399279833 |
dc.contributor.author.fl_str_mv |
Santos, Sarah Helen Dias dos |
contributor_str_mv |
Eizirik, Eduardo |
dc.subject.por.fl_str_mv |
Filogenômica Hibridação Introgressão Especiação |
topic |
Filogenômica Hibridação Introgressão Especiação Felidae Phylogenomics Hybridization Introgression Speciation CIENCIAS BIOLOGICAS::ZOOLOGIA |
dc.subject.eng.fl_str_mv |
Felidae Phylogenomics Hybridization Introgression Speciation |
dc.subject.cnpq.fl_str_mv |
CIENCIAS BIOLOGICAS::ZOOLOGIA |
description |
The evolutionary history of species, especially those derived from rapid and recent radiations, is often embedded in a complex network of past admixtures process. This complex history, associated with the stochastic nature of incomplete lineage sorting (ILS), poses challenges for reconstructing their phylogenetic relationships, even with the use of whole-genome-sequence (wgs) data. Several studies have addressed the evolutionary relationships among the five extant species of Panthera, and recent analyses have revealed extensive genealogical discordance in this group, making it difficult to discern which topology reflects the original sequence of speciation events. So far, phylogenomic studies of Panthera employing wgs data have included a single individual per species, which precludes an assessment of replicability of topological patterns when the species’ representative is changed. Here we employ a Panthera-wide wgs dataset incorporating three jaguar genomes (two of which are novel), along with two representatives each of lions and leopards, to dissect the relationships among these three species. We tested the genome-wide monophyly of each of them, and then investigated their patterns of genealogical discordance. We initially assessed the frequency of each of the three alternative topologies along their genomes, by breaking up the alignment into windows of four different sizes (50 kb, 100 kb, 1 Mb and 5 Mb) and reconstructing the ML phylogeny (tested with nonparametric bootstrapping) for each window. Supported ML phylogenies were then plotted along the genome, and the frequency of each topology was assessed relative to the recombination rate of the respective genomic segment. Using 100-kb windows, we also estimated divergence times between the two sister-species defined by each topology, as well as a ‘normalized age’ in which the depth of the sisterspecies node was divided by that of the preceding (trio) node, to further correct for recombination-rate effects. We also employed 100-kb windows to identify and map introgression events along the genome, assuming different topologies as the ‘species tree’. Genome-wide monophyly for all three tested species was strongly supported, and a clear pattern was observed with respect to their phylogenetic relationships: with all window sizes, the most frequent topology (76% – 95%) united lion+leopard as sisterspecies (topology 1), followed by lion+jaguar (topology 2: 4% – 8%) and leopard+jaguar (topology 3: 1% – 6%). Topology 1 was strongly predominant in regions of high recombination, e.g. terminal chromosomal segments, whereas topologies 2 and 3 were strongly enriched in low-recombination regions, especially in centromeric segments. Absolute divergence times were younger for topologies 2 and 3 (relative to topology 1) on both autosomes and the X chromosome, but this pattern was reversed when we 19 ‘normalized’ the depth of the terminal node using the age of the preceding (trio) node. The introgression analyses indicated pervasive historical admixture among these species, regardless of the assumed species tree. For example, if topology 1 was assumed, 5% of the genome was inferred to derive from lion-jaguar hybridization, while if topology 2 or 3 were assumed, 35% of the genome was detected as introgressed between lion and leopard. Overall, our results indicate that topology 2 (lion+jaguar) most likely reflects the original speciation relationship, given its age, frequency and recombination profile. The jaguar+leopard topology did not differ significantly in age or recombination profile, and thus likely derives from ILS. Remarkably, these results imply that a large proportion of the genome has been overwritten by post-speciation admixture between lion and leopard, leading to a complex mosaic whose phylogenetic resolution requires integration among different approaches. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-06-25T12:08:16Z |
dc.date.issued.fl_str_mv |
2019-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/8747 |
url |
http://tede2.pucrs.br/tede2/handle/tede/8747 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.cnpq.fl_str_mv |
-6482652380601267558 |
dc.relation.confidence.fl_str_mv |
500 600 |
dc.relation.sponsorship.fl_str_mv |
1802873727776104890 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.publisher.program.fl_str_mv |
Programa de Pós Graduação em Ecologia e Evolução da Biodiversidade |
dc.publisher.initials.fl_str_mv |
PUCRS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Ciências |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
bitstream.url.fl_str_mv |
https://tede2.pucrs.br/tede2/bitstream/tede/8747/5/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf https://tede2.pucrs.br/tede2/bitstream/tede/8747/4/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.jpg https://tede2.pucrs.br/tede2/bitstream/tede/8747/3/DIS_SARAH_HELEN_DIAS_DOS_SANTOS_CONFIDENCIAL.pdf.txt https://tede2.pucrs.br/tede2/bitstream/tede/8747/1/license.txt |
bitstream.checksum.fl_str_mv |
b3f961354cce1bf459d2efe9317a2d8f 6c8852c023ea3bb3bbde5f95bc4b69d0 8d5d2801c91278b45b4d97becc0571e1 220e11f2d3ba5354f917c7035aadef24 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
_version_ |
1799765340458057728 |