Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão

Detalhes bibliográficos
Autor(a) principal: Schuh, Ânderson Rodrigo
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da PUC_RS
Texto Completo: http://tede2.pucrs.br/tede2/handle/tede/7711
Resumo: Brain-Machine Interface (BCI) or Brain-Computer Interface (BCI) is a computer system capable of establishing communication between human neurophysiological activity and a computer. A hybrid BCI (hBCI) consists of a combination of two or more types of BCIs, two or more signal acquisition techniques, or a combination of BCI with other non-BCI based interaction techniques. A Collaborative BCI (cBCI) integrates the brain activity of a group of individuals, mainly acting in the increase of the human capacity. Low-cost electroencephalogram (EEG) equipment is currently available in the market, one of which is the Emotiv EEG, which is portable, has 14 electrodes, and in addition to registering the neurophysiological signals, it processes and makes available them in the form of neural measurements, such as levels of attention and excitement. In addition to neural measures, other measures may reveal an individual's behavior, such as the speed with which he responds to a challenge, which may suggest how confident he is about this decision-making. This work has as main objective "To verify if neural and behavioral measures have relation with the right and wrong decision making". Initially, a systematic review of the literature was carried out. Afterwards, a data collection system and a decision-making task based on Rapid Serial Visual Presentation (RSVP) were developed. The experiment consisted of 10 participants, in which each one performed 112 tests, recording the neural measurements taken by Emotiv EEG, besides the Reaction Time (RT) as a behavioral measure and the response given by the user, both collected by a conventional keyboard. Statistical techniques, such as descriptive analysis, including data summarization and boxplot charts, and multivariate analysis were used for the data analysis, using logistic regression to estimate the relationship between neural and behavioral measures with the decisions made. The proposed task proved to be efficient, revealing in the results that the difficulty was effective. The developed database proved to be efficient in synchronizing the task data and the recorded measurements. After different approaches of statistical analysis of the data, a regression model that could explain with high explanatory power the data sampled was not found. Thus, based on the experiment performed and statistical analyzes, no relationship was found between neural and behavioral measures and the correct or wrong decision-making.
id P_RS_b68f68f61ec5438e3971b48845e6a1f8
oai_identifier_str oai:tede2.pucrs.br:tede/7711
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Campos, Márcia de Borbahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797437H8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8187999U7Schuh, Ânderson Rodrigo2017-11-01T19:17:02Z2017-03-30http://tede2.pucrs.br/tede2/handle/tede/7711Brain-Machine Interface (BCI) or Brain-Computer Interface (BCI) is a computer system capable of establishing communication between human neurophysiological activity and a computer. A hybrid BCI (hBCI) consists of a combination of two or more types of BCIs, two or more signal acquisition techniques, or a combination of BCI with other non-BCI based interaction techniques. A Collaborative BCI (cBCI) integrates the brain activity of a group of individuals, mainly acting in the increase of the human capacity. Low-cost electroencephalogram (EEG) equipment is currently available in the market, one of which is the Emotiv EEG, which is portable, has 14 electrodes, and in addition to registering the neurophysiological signals, it processes and makes available them in the form of neural measurements, such as levels of attention and excitement. In addition to neural measures, other measures may reveal an individual's behavior, such as the speed with which he responds to a challenge, which may suggest how confident he is about this decision-making. This work has as main objective "To verify if neural and behavioral measures have relation with the right and wrong decision making". Initially, a systematic review of the literature was carried out. Afterwards, a data collection system and a decision-making task based on Rapid Serial Visual Presentation (RSVP) were developed. The experiment consisted of 10 participants, in which each one performed 112 tests, recording the neural measurements taken by Emotiv EEG, besides the Reaction Time (RT) as a behavioral measure and the response given by the user, both collected by a conventional keyboard. Statistical techniques, such as descriptive analysis, including data summarization and boxplot charts, and multivariate analysis were used for the data analysis, using logistic regression to estimate the relationship between neural and behavioral measures with the decisions made. The proposed task proved to be efficient, revealing in the results that the difficulty was effective. The developed database proved to be efficient in synchronizing the task data and the recorded measurements. After different approaches of statistical analysis of the data, a regression model that could explain with high explanatory power the data sampled was not found. Thus, based on the experiment performed and statistical analyzes, no relationship was found between neural and behavioral measures and the correct or wrong decision-making.Interface Cérebro-Máquina (ICM) ou Interface Cérebro-Computador (ICC) é um sistema computacional capaz de estabelecer a comunicação entre a atividade neurofisiológica humana e um computador. Uma ICC híbrida (ICCh) consiste na combinação de dois ou mais tipos de ICC, duas ou mais técnicas de aquisição de sinal, ou, ainda, da combinação de uma ICC com outras técnicas de interação não baseadas em ICC. Uma ICC Colaborativa (ICCc) integra a atividade cerebral de um grupo de indivíduos, atuando, principalmente, no aumento da capacidade humana. Atualmente, no mercado, estão disponíveis equipamentos de Eletroencefalograma (EEG) de baixo custo, sendo um desses o Emotiv EEG, que é portátil, possui 14 eletrodos, e, além e registrar os sinais neurofisiológicos, os processa e disponibiliza em forma de medidas neurais, como, por exemplo, níveis de atenção e excitamento. Além de medidas neurais, outras medidas podem revelar o comportamento de um indivíduo, como, por exemplo, a velocidade com que responde um desafio, que pode sugerir o quão confiante ele está sobre esta tomada de decisão. Este trabalho tem como principal objetivo “Verificar se medidas neurais e comportamentais possuem relação com as tomadas de decisão corretas e erradas”. Inicialmente, foi realizada uma revisão sistemática da literatura. Após, foram desenvolvidos um sistema de coleta de dados e uma tarefa de tomada de decisão baseada em Rapid Serial Visual Presentation (RSVP). O experimento contou com 10 participantes, no qual cada um executou 112 ensaios, sendo registradas as medidas neurais captadas pelo Emotiv EEG, além do Tempo de Reação (RT) como medida comportamental e, a resposta dada pelo usuário, ambas coletadas por um teclado convencional. Para a análise dos dados, foram aplicadas técnicas de estatística, tais como análise descritiva, incluindo sumarização dos dados e gráficos de boxplots, e análise multivariada, utilizando regressão logística para estimar a relação entre medidas neurais e comportamentais com as decisões tomadas. A tarefa proposta mostrou-se eficiente, revelando nos resultados que a dificuldade empregada se mostrou efetiva. O banco de dados desenvolvido mostrou-se eficiente na sincronização dos dados da tarefa e as medidas registradas. Após diferentes abordagens de análise estatística dos dados, não foi encontrado um modelo de regressão que pudesse explicar com alto poder explicativo os dados amostrados. Desta maneira, baseado no experimento realizado e nas análises estatísticas, não foram encontradas relações entre medidas neurais e comportamentais e as tomadas de decisão corretas ou erradas.Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-11-01T19:16:41Z No. of bitstreams: 1 DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf: 4835434 bytes, checksum: 8955e506f3216fd9bb93fba6d988ec02 (MD5)Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-11-01T19:16:50Z (GMT) No. of bitstreams: 1 DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf: 4835434 bytes, checksum: 8955e506f3216fd9bb93fba6d988ec02 (MD5)Made available in DSpace on 2017-11-01T19:17:02Z (GMT). No. of bitstreams: 1 DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf: 4835434 bytes, checksum: 8955e506f3216fd9bb93fba6d988ec02 (MD5) Previous issue date: 2017-03-30application/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/170168/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em Ciência da ComputaçãoPUCRSBrasilFaculdade de InformáticaInterface Cérebro-Computador ColaborativaRevisão SistemáticaTomada de DecisãoRapid Serial Visual PresentarionEEGCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOInterface cérebro-computador híbrida e colaborativa no processo de tomada de decisãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTrabalho não apresenta restrição para publicação1974996533081274470500500500-3008542510401149144-862078257083325301info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSTHUMBNAILDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.jpgDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.jpgimage/jpeg3968http://tede2.pucrs.br/tede2/bitstream/tede/7711/4/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.jpg376ac08779f5e464748433d1988e7d2dMD54TEXTDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.txtDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.txttext/plain226800http://tede2.pucrs.br/tede2/bitstream/tede/7711/3/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.txtf57f6d358b8a4257b3185bbe0fcffd6fMD53ORIGINALDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdfDIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdfapplication/pdf4835434http://tede2.pucrs.br/tede2/bitstream/tede/7711/2/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf8955e506f3216fd9bb93fba6d988ec02MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8610http://tede2.pucrs.br/tede2/bitstream/tede/7711/1/license.txt5a9d6006225b368ef605ba16b4f6d1beMD51tede/77112017-11-01 20:00:46.67oai:tede2.pucrs.br:tede/7711QXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBFbGV0csO0bmljYTogQ29tIGJhc2Ugbm8gZGlzcG9zdG8gbmEgTGVpIEZlZGVyYWwgbsK6OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYcOnw6NvIGVsZXRyw7RuaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsLCBzZWRpYWRhIGEgQXYuIElwaXJhbmdhIDY2ODEsIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIGNvbSByZWdpc3RybyBkZSBDTlBKIDg4NjMwNDEzMDAwMi04MSBiZW0gY29tbyBlbSBvdXRyYXMgYmlibGlvdGVjYXMgZGlnaXRhaXMsIG5hY2lvbmFpcyBlIGludGVybmFjaW9uYWlzLCBjb25zw7NyY2lvcyBlIHJlZGVzIMOgcyBxdWFpcyBhIGJpYmxpb3RlY2EgZGEgUFVDUlMgcG9zc2EgYSB2aXIgcGFydGljaXBhciwgc2VtIMO0bnVzIGFsdXNpdm8gYW9zIGRpcmVpdG9zIGF1dG9yYWlzLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2017-11-01T22:00:46Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.por.fl_str_mv Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
title Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
spellingShingle Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
Schuh, Ânderson Rodrigo
Interface Cérebro-Computador Colaborativa
Revisão Sistemática
Tomada de Decisão
Rapid Serial Visual Presentarion
EEG
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
title_full Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
title_fullStr Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
title_full_unstemmed Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
title_sort Interface cérebro-computador híbrida e colaborativa no processo de tomada de decisão
author Schuh, Ânderson Rodrigo
author_facet Schuh, Ânderson Rodrigo
author_role author
dc.contributor.advisor1.fl_str_mv Campos, Márcia de Borba
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797437H8
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8187999U7
dc.contributor.author.fl_str_mv Schuh, Ânderson Rodrigo
contributor_str_mv Campos, Márcia de Borba
dc.subject.por.fl_str_mv Interface Cérebro-Computador Colaborativa
Revisão Sistemática
Tomada de Decisão
Rapid Serial Visual Presentarion
EEG
topic Interface Cérebro-Computador Colaborativa
Revisão Sistemática
Tomada de Decisão
Rapid Serial Visual Presentarion
EEG
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Brain-Machine Interface (BCI) or Brain-Computer Interface (BCI) is a computer system capable of establishing communication between human neurophysiological activity and a computer. A hybrid BCI (hBCI) consists of a combination of two or more types of BCIs, two or more signal acquisition techniques, or a combination of BCI with other non-BCI based interaction techniques. A Collaborative BCI (cBCI) integrates the brain activity of a group of individuals, mainly acting in the increase of the human capacity. Low-cost electroencephalogram (EEG) equipment is currently available in the market, one of which is the Emotiv EEG, which is portable, has 14 electrodes, and in addition to registering the neurophysiological signals, it processes and makes available them in the form of neural measurements, such as levels of attention and excitement. In addition to neural measures, other measures may reveal an individual's behavior, such as the speed with which he responds to a challenge, which may suggest how confident he is about this decision-making. This work has as main objective "To verify if neural and behavioral measures have relation with the right and wrong decision making". Initially, a systematic review of the literature was carried out. Afterwards, a data collection system and a decision-making task based on Rapid Serial Visual Presentation (RSVP) were developed. The experiment consisted of 10 participants, in which each one performed 112 tests, recording the neural measurements taken by Emotiv EEG, besides the Reaction Time (RT) as a behavioral measure and the response given by the user, both collected by a conventional keyboard. Statistical techniques, such as descriptive analysis, including data summarization and boxplot charts, and multivariate analysis were used for the data analysis, using logistic regression to estimate the relationship between neural and behavioral measures with the decisions made. The proposed task proved to be efficient, revealing in the results that the difficulty was effective. The developed database proved to be efficient in synchronizing the task data and the recorded measurements. After different approaches of statistical analysis of the data, a regression model that could explain with high explanatory power the data sampled was not found. Thus, based on the experiment performed and statistical analyzes, no relationship was found between neural and behavioral measures and the correct or wrong decision-making.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-11-01T19:17:02Z
dc.date.issued.fl_str_mv 2017-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/7711
url http://tede2.pucrs.br/tede2/handle/tede/7711
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 500
500
500
dc.relation.department.fl_str_mv -3008542510401149144
dc.relation.cnpq.fl_str_mv -862078257083325301
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv PUCRS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Informática
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
bitstream.url.fl_str_mv http://tede2.pucrs.br/tede2/bitstream/tede/7711/4/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.jpg
http://tede2.pucrs.br/tede2/bitstream/tede/7711/3/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf.txt
http://tede2.pucrs.br/tede2/bitstream/tede/7711/2/DIS_ANDERSON_RODRIGO_SCHUH_COMPLETO.pdf
http://tede2.pucrs.br/tede2/bitstream/tede/7711/1/license.txt
bitstream.checksum.fl_str_mv 376ac08779f5e464748433d1988e7d2d
f57f6d358b8a4257b3185bbe0fcffd6f
8955e506f3216fd9bb93fba6d988ec02
5a9d6006225b368ef605ba16b4f6d1be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1799765329508827136