Feature-level sentiment analysis applied to brazilian portuguese reviews
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da PUC_RS |
Texto Completo: | http://tede2.pucrs.br/tede2/handle/tede/6031 |
Resumo: | Sentiment Analysis is the field of study that analyzes people’s opinions in texts. In the last decade, humans have come to share their opinions in social media on the Web (e.g., forum discussions and posts in social network sites). Opinions are important because whenever we need to take a decision, we want to know others’ points of view. The interest of industry and academia in this field of study is partly due to its potential applications, such as: marketing, public relations and political campaign. Research in this field often considers English data, while data from other languages are less explored. It is possible realize data analysis in different levels, in this work we choose a finer-grain analysis, at aspect-level. Ontologies can represent aspects, that are “part-of” an object or property of “part-of” an object, we proposed a method for feature-level sentiment analysis using ontologies applied to Brazilian Portuguese reviews. In order to obtain a complete analysis, we recognized features explicit and implicit using ontologies. Relatively less work has been done about implicit feature identification. Finally, determine whether the sentiment in relation to the aspects is positive or negative using sentiment lexicons and linguistic rules. Our method is comprised of four steps: preprocessing, feature identification, polarity identification and summarizing. For evaluate this work, we apply our proposal method to a dataset of accommodation sector. According to our experiments, in general the best results were obtained when using TreeTagger, synsets with polarities from Onto.PT and linguistic rule (adjective position) for negative polarity identification and (baseline) for positive polarity identificatio |
id |
P_RS_defb3dec1e34e354f3154c3842e4a94f |
---|---|
oai_identifier_str |
oai:tede2.pucrs.br:tede/6031 |
network_acronym_str |
P_RS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
repository_id_str |
|
spelling |
Vieira, Renata451.334.330-34007.092.480-59http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4214363H6Freitas, Larissa Astrogildo de2015-05-19T12:00:48Z2015-03-23http://tede2.pucrs.br/tede2/handle/tede/6031Sentiment Analysis is the field of study that analyzes people’s opinions in texts. In the last decade, humans have come to share their opinions in social media on the Web (e.g., forum discussions and posts in social network sites). Opinions are important because whenever we need to take a decision, we want to know others’ points of view. The interest of industry and academia in this field of study is partly due to its potential applications, such as: marketing, public relations and political campaign. Research in this field often considers English data, while data from other languages are less explored. It is possible realize data analysis in different levels, in this work we choose a finer-grain analysis, at aspect-level. Ontologies can represent aspects, that are “part-of” an object or property of “part-of” an object, we proposed a method for feature-level sentiment analysis using ontologies applied to Brazilian Portuguese reviews. In order to obtain a complete analysis, we recognized features explicit and implicit using ontologies. Relatively less work has been done about implicit feature identification. Finally, determine whether the sentiment in relation to the aspects is positive or negative using sentiment lexicons and linguistic rules. Our method is comprised of four steps: preprocessing, feature identification, polarity identification and summarizing. For evaluate this work, we apply our proposal method to a dataset of accommodation sector. According to our experiments, in general the best results were obtained when using TreeTagger, synsets with polarities from Onto.PT and linguistic rule (adjective position) for negative polarity identification and (baseline) for positive polarity identificatioAnálise de sentimento é o campo de estudo que analisa a opinião de pessoas em textos. Na última década, humanos têm compartilhado suas opiniões em mídias sociais na Web (por exemplo, fóruns de discussão e posts em sites de redes sociais). Opiniões são importantes porque sempre que necessitamos tomar uma decisão, queremos saber o ponto de vista de outras pessoas. O interesse da indústria e da academia neste campo de estudo se deve a aplicações potenciais, tais como: compra/venda, relações públicas e campanhas políticas. Pesquisas neste campo muitas vezes consideram dados em inglês, enquanto dados em outros idiomas são pouco explorados. É possível realizar a análise dos dados em diferentes níveis, neste trabalho optamos pela análise no nível de aspecto, na qual a granularidade é mais fina. Como ontologias podem ser utilizadas para representar aspectos, que são “parte-de” um objeto ou propriedade de “parte-de” um objeto, propomos um método para análise de sentimento aplicado a comentários em português brasileiro, sob o nível de aspecto usando ontologias. A fim de obter uma análise completa, reconhecemos aspectos explícitos e implícitos usando ontologias. Relativamente poucos trabalhos têm sido feitos sobre identificação de aspectos implícitos. Finalmente determinamos se o sentimento em relação aos aspectos é positivo ou negativo usando léxicos de sentimento e regras linguísticas. Nosso método é composto de quatro etapas: pré-processamento, identificação de aspecto, identificação de polaridade e sumarização. Para avaliar este trabalho, aplicamos o método proposto nos comentários do setor hoteleiro. De acordo com nosso experimento, o melhor resultado obtido foi quando utilizamos o TreeTagger, o synset com polaridade do Onto.PT e a regra linguística (posição do adjetivo) na identificação da polaridade negativa e (baseline) na identificação da polaridade positivaSubmitted by Setor de Tratamento da Informação - BC/PUCRS (tede2@pucrs.br) on 2015-05-19T12:00:48Z No. of bitstreams: 1 468945 - Txto Completo.pdf: 990591 bytes, checksum: 7d04b4b3b2f91050851802c6d65349f1 (MD5)Made available in DSpace on 2015-05-19T12:00:48Z (GMT). No. of bitstreams: 1 468945 - Txto Completo.pdf: 990591 bytes, checksum: 7d04b4b3b2f91050851802c6d65349f1 (MD5) Previous issue date: 2015-03-23Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGSCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/162812/468945%20-%20Texto%20Completo.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em Ciência da ComputaçãoPUCRSBrasilFaculdade de InformáticaINFORMÁTICAONTOLOGIALINGUÍSTICA COMPUTACIONALPROCESSAMENTO DA LINGUAGEM NATURALCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOFeature-level sentiment analysis applied to brazilian portuguese reviewsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis1974996533081274470600600600600600-30085425104011491443671711205811204509-36147355738911222542075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSORIGINAL468945 - Texto Completo.pdf468945 - Texto Completo.pdfapplication/pdf993755http://tede2.pucrs.br/tede2/bitstream/tede/6031/2/468945+-+Texto+Completo.pdfd89826d93dc36151af60cc921ecaecfbMD52THUMBNAIL468945 - Texto Completo.pdf.jpg468945 - Texto Completo.pdf.jpgimage/jpeg3434http://tede2.pucrs.br/tede2/bitstream/tede/6031/4/468945+-+Texto+Completo.pdf.jpg3e64e247a4c0aa7c36341815184b82a2MD54TEXT468945 - Texto Completo.pdf.txt468945 - Texto Completo.pdf.txttext/plain146964http://tede2.pucrs.br/tede2/bitstream/tede/6031/3/468945+-+Texto+Completo.pdf.txt88d4acde21bfdc5f6efaee56e039eddcMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8610http://tede2.pucrs.br/tede2/bitstream/tede/6031/1/license.txt5a9d6006225b368ef605ba16b4f6d1beMD51tede/60312015-09-29 08:23:02.93oai:tede2.pucrs.br:tede/6031QXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBFbGV0csO0bmljYTogQ29tIGJhc2Ugbm8gZGlzcG9zdG8gbmEgTGVpIEZlZGVyYWwgbsK6OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYcOnw6NvIGVsZXRyw7RuaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsLCBzZWRpYWRhIGEgQXYuIElwaXJhbmdhIDY2ODEsIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIGNvbSByZWdpc3RybyBkZSBDTlBKIDg4NjMwNDEzMDAwMi04MSBiZW0gY29tbyBlbSBvdXRyYXMgYmlibGlvdGVjYXMgZGlnaXRhaXMsIG5hY2lvbmFpcyBlIGludGVybmFjaW9uYWlzLCBjb25zw7NyY2lvcyBlIHJlZGVzIMOgcyBxdWFpcyBhIGJpYmxpb3RlY2EgZGEgUFVDUlMgcG9zc2EgYSB2aXIgcGFydGljaXBhciwgc2VtIMO0bnVzIGFsdXNpdm8gYW9zIGRpcmVpdG9zIGF1dG9yYWlzLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2015-09-29T11:23:02Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.por.fl_str_mv |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
title |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
spellingShingle |
Feature-level sentiment analysis applied to brazilian portuguese reviews Freitas, Larissa Astrogildo de INFORMÁTICA ONTOLOGIA LINGUÍSTICA COMPUTACIONAL PROCESSAMENTO DA LINGUAGEM NATURAL CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
title_full |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
title_fullStr |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
title_full_unstemmed |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
title_sort |
Feature-level sentiment analysis applied to brazilian portuguese reviews |
author |
Freitas, Larissa Astrogildo de |
author_facet |
Freitas, Larissa Astrogildo de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Vieira, Renata |
dc.contributor.advisor1ID.fl_str_mv |
451.334.330-34 |
dc.contributor.authorID.fl_str_mv |
007.092.480-59 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4214363H6 |
dc.contributor.author.fl_str_mv |
Freitas, Larissa Astrogildo de |
contributor_str_mv |
Vieira, Renata |
dc.subject.por.fl_str_mv |
INFORMÁTICA ONTOLOGIA LINGUÍSTICA COMPUTACIONAL PROCESSAMENTO DA LINGUAGEM NATURAL |
topic |
INFORMÁTICA ONTOLOGIA LINGUÍSTICA COMPUTACIONAL PROCESSAMENTO DA LINGUAGEM NATURAL CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Sentiment Analysis is the field of study that analyzes people’s opinions in texts. In the last decade, humans have come to share their opinions in social media on the Web (e.g., forum discussions and posts in social network sites). Opinions are important because whenever we need to take a decision, we want to know others’ points of view. The interest of industry and academia in this field of study is partly due to its potential applications, such as: marketing, public relations and political campaign. Research in this field often considers English data, while data from other languages are less explored. It is possible realize data analysis in different levels, in this work we choose a finer-grain analysis, at aspect-level. Ontologies can represent aspects, that are “part-of” an object or property of “part-of” an object, we proposed a method for feature-level sentiment analysis using ontologies applied to Brazilian Portuguese reviews. In order to obtain a complete analysis, we recognized features explicit and implicit using ontologies. Relatively less work has been done about implicit feature identification. Finally, determine whether the sentiment in relation to the aspects is positive or negative using sentiment lexicons and linguistic rules. Our method is comprised of four steps: preprocessing, feature identification, polarity identification and summarizing. For evaluate this work, we apply our proposal method to a dataset of accommodation sector. According to our experiments, in general the best results were obtained when using TreeTagger, synsets with polarities from Onto.PT and linguistic rule (adjective position) for negative polarity identification and (baseline) for positive polarity identificatio |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-05-19T12:00:48Z |
dc.date.issued.fl_str_mv |
2015-03-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/6031 |
url |
http://tede2.pucrs.br/tede2/handle/tede/6031 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
1974996533081274470 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 600 |
dc.relation.department.fl_str_mv |
-3008542510401149144 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-3614735573891122254 2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
PUCRS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Informática |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
bitstream.url.fl_str_mv |
http://tede2.pucrs.br/tede2/bitstream/tede/6031/2/468945+-+Texto+Completo.pdf http://tede2.pucrs.br/tede2/bitstream/tede/6031/4/468945+-+Texto+Completo.pdf.jpg http://tede2.pucrs.br/tede2/bitstream/tede/6031/3/468945+-+Texto+Completo.pdf.txt http://tede2.pucrs.br/tede2/bitstream/tede/6031/1/license.txt |
bitstream.checksum.fl_str_mv |
d89826d93dc36151af60cc921ecaecfb 3e64e247a4c0aa7c36341815184b82a2 88d4acde21bfdc5f6efaee56e039eddc 5a9d6006225b368ef605ba16b4f6d1be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
_version_ |
1799765312142311424 |