Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/24470 |
Resumo: | The compound binomial model for the risk process was introduced by Gerber (1988) and is sometimes considered as a discrete time approximation to the classical compound Poisson model in continuous time; Dickson (1994) discusses this issue. After having introduced some notation in Section 2, we describe the model and set up some recursions for the in nite time ruin probability in Section 3. The core of the paper is Section 4. Here we present the Lundberg inequality and the Cramér-Lundberg approximation for the infinite time ruin probability in the compound binomial model and characterise the class of severity distributions for which the asymptotic expression is exact. Finally, in Section 5, we compare this characterisation with the analogous characterisation in the continuous time Poisson model. Although it is well known in the latter model, we give a deduction comparable with the one in Section 4. |
id |
RCAP_00e1657abd3dd387ed8edec88c462a10 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/24470 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial modelCramér - Lundberg ApproximationRuin ApproximationPoisson ModelThe compound binomial model for the risk process was introduced by Gerber (1988) and is sometimes considered as a discrete time approximation to the classical compound Poisson model in continuous time; Dickson (1994) discusses this issue. After having introduced some notation in Section 2, we describe the model and set up some recursions for the in nite time ruin probability in Section 3. The core of the paper is Section 4. Here we present the Lundberg inequality and the Cramér-Lundberg approximation for the infinite time ruin probability in the compound binomial model and characterise the class of severity distributions for which the asymptotic expression is exact. Finally, in Section 5, we compare this characterisation with the analogous characterisation in the continuous time Poisson model. Although it is well known in the latter model, we give a deduction comparable with the one in Section 4.ISEG - CEMAPRERepositório da Universidade de LisboaSundt, BjørnReis, Alfredo D. Egídio dos2022-06-02T13:32:42Z20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/24470engSundt, Bjørn and Alfredo D. Egídio Dos Reis.(2007). "Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model". BASA- Bulletin of the Swiss Association of Actuaries. 2: pp. 179-190.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:54:07Zoai:www.repository.utl.pt:10400.5/24470Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:08:30.560605Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
title |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
spellingShingle |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model Sundt, Bjørn Cramér - Lundberg Approximation Ruin Approximation Poisson Model |
title_short |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
title_full |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
title_fullStr |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
title_full_unstemmed |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
title_sort |
Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model |
author |
Sundt, Bjørn |
author_facet |
Sundt, Bjørn Reis, Alfredo D. Egídio dos |
author_role |
author |
author2 |
Reis, Alfredo D. Egídio dos |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Sundt, Bjørn Reis, Alfredo D. Egídio dos |
dc.subject.por.fl_str_mv |
Cramér - Lundberg Approximation Ruin Approximation Poisson Model |
topic |
Cramér - Lundberg Approximation Ruin Approximation Poisson Model |
description |
The compound binomial model for the risk process was introduced by Gerber (1988) and is sometimes considered as a discrete time approximation to the classical compound Poisson model in continuous time; Dickson (1994) discusses this issue. After having introduced some notation in Section 2, we describe the model and set up some recursions for the in nite time ruin probability in Section 3. The core of the paper is Section 4. Here we present the Lundberg inequality and the Cramér-Lundberg approximation for the infinite time ruin probability in the compound binomial model and characterise the class of severity distributions for which the asymptotic expression is exact. Finally, in Section 5, we compare this characterisation with the analogous characterisation in the continuous time Poisson model. Although it is well known in the latter model, we give a deduction comparable with the one in Section 4. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2022-06-02T13:32:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/24470 |
url |
http://hdl.handle.net/10400.5/24470 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sundt, Bjørn and Alfredo D. Egídio Dos Reis.(2007). "Cramér-Lundberg results for the infinite time ruin probability in the compound binomial model". BASA- Bulletin of the Swiss Association of Actuaries. 2: pp. 179-190. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ISEG - CEMAPRE |
publisher.none.fl_str_mv |
ISEG - CEMAPRE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131179461378048 |