Classifying Breast Tumors using Medical Microwave Radar Imaging
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/126696 |
Resumo: | Medical Microwave Imaging (MMI) has been studied in the past years to develop techniques to detect breast cancer at the earliest stages of development. Particularly, ultra-wideband (UWB) micro-wave radar imaging systems can detect and classify tumors as benign or malignant since this technique yields information about the size and shape of tumors. In this study we used this technology to classify tumors. The primary goal of this dissertation is two-folded. First, producing breast tumor numerical mod-els and using them in 2D MMI simulations that recreate the conditions of a UWB microwave radar imaging system. The breast tumor numerical produced resemble real tumor morphologies since they are made from breast MRI exams segmentations. Second, the data of the backscattered UWB microwave signals produced by the MMI simulations was used to classify tumors according to their size and histol-ogy, which is relevant to assess potential of UWB microwave radar imaging systems as a reliable alter-native method for the classification of breast tumors in the field of Medical Microwave Imaging. The Classification Algorithms used in this work were Pseudo Linear Discriminant Analysis (Pseudo-LDA), Pseudo Quadratic Discriminant Analysis (pseudo-QDA), and k-Nearest Neighbors (KNN), alongside with a feature extraction algorithm – Principal Component Analysis (PCA). |
id |
RCAP_01e737c3ce19e996b63acb083115ad31 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/126696 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Classifying Breast Tumors using Medical Microwave Radar ImagingBreast CancerMedical Microwave ImagingUWB Microwave Radar Imaging SystemMRI SegmentationNumerical ModelsClassification Algorithms.Domínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaMedical Microwave Imaging (MMI) has been studied in the past years to develop techniques to detect breast cancer at the earliest stages of development. Particularly, ultra-wideband (UWB) micro-wave radar imaging systems can detect and classify tumors as benign or malignant since this technique yields information about the size and shape of tumors. In this study we used this technology to classify tumors. The primary goal of this dissertation is two-folded. First, producing breast tumor numerical mod-els and using them in 2D MMI simulations that recreate the conditions of a UWB microwave radar imaging system. The breast tumor numerical produced resemble real tumor morphologies since they are made from breast MRI exams segmentations. Second, the data of the backscattered UWB microwave signals produced by the MMI simulations was used to classify tumors according to their size and histol-ogy, which is relevant to assess potential of UWB microwave radar imaging systems as a reliable alter-native method for the classification of breast tumors in the field of Medical Microwave Imaging. The Classification Algorithms used in this work were Pseudo Linear Discriminant Analysis (Pseudo-LDA), Pseudo Quadratic Discriminant Analysis (pseudo-QDA), and k-Nearest Neighbors (KNN), alongside with a feature extraction algorithm – Principal Component Analysis (PCA).A Imagem Médica por Microondas (do inglês, MMI) tem sido estudada nos últimos anos de forma a desenvolver técnicas de deteção do cancro da mama nas primeiras fases de desenvolvimento. Em particular, os sistemas de imagem de radar por microondas em banda ultralarga (do inglês UWB) podem detetar e classificar os tumores como benignos ou malignos, uma vez que esta técnica produz informação sobre o tamanho e a forma dos tumores. Neste estudo, utilizámos esta tecnologia para classificar os tumores. A dissertação tem dois objetivos principais. Primeiro, produzir fantomas de tumores mamários e utilizá-los em simulações de MMI em 2D que recriam as condições de um sistema de imagem de radar por microondas UWB. Os fantomas numéricos de tumores mamários produzidos possuem morfologias semelhantes a tumores reais, uma vez que são feitos a partir de segmentações de exames de ressonância magnética da mama. Em segundo lugar, as reflexões dos sinais de microondas UWB produzidos pelas simulações de MMI foram utilizados para classificar tumores de acordo com o seu tamanho e histologia, o que é relevante para avaliar o potencial dos sistemas de imagem de radar por microondas UWB como um método alternativo e fiável para a classificação de tumores mamários no campo da MMI. Os Algo-ritmos de Classificação utilizados neste trabalho foram a Pseudo Linear Discriminant Analysis (Pseudo-LDA), Pseudo Quadratic Discriminant Analysis (pseudo-QDA), e a K-Nearest Neighbors (KNN), jun-tamente com um algoritmo de extração de features - Análise de Componentes Principais (do inglês PCA).Conceição, RaquelVigário, RicardoRUNRodrigues, Miguel Ângelo Borlão2021-10-26T14:08:01Z2021-032021-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/126696enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:07:01Zoai:run.unl.pt:10362/126696Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:56.666951Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
title |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
spellingShingle |
Classifying Breast Tumors using Medical Microwave Radar Imaging Rodrigues, Miguel Ângelo Borlão Breast Cancer Medical Microwave Imaging UWB Microwave Radar Imaging System MRI Segmentation Numerical Models Classification Algorithms. Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
title_short |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
title_full |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
title_fullStr |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
title_full_unstemmed |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
title_sort |
Classifying Breast Tumors using Medical Microwave Radar Imaging |
author |
Rodrigues, Miguel Ângelo Borlão |
author_facet |
Rodrigues, Miguel Ângelo Borlão |
author_role |
author |
dc.contributor.none.fl_str_mv |
Conceição, Raquel Vigário, Ricardo RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Miguel Ângelo Borlão |
dc.subject.por.fl_str_mv |
Breast Cancer Medical Microwave Imaging UWB Microwave Radar Imaging System MRI Segmentation Numerical Models Classification Algorithms. Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
topic |
Breast Cancer Medical Microwave Imaging UWB Microwave Radar Imaging System MRI Segmentation Numerical Models Classification Algorithms. Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
description |
Medical Microwave Imaging (MMI) has been studied in the past years to develop techniques to detect breast cancer at the earliest stages of development. Particularly, ultra-wideband (UWB) micro-wave radar imaging systems can detect and classify tumors as benign or malignant since this technique yields information about the size and shape of tumors. In this study we used this technology to classify tumors. The primary goal of this dissertation is two-folded. First, producing breast tumor numerical mod-els and using them in 2D MMI simulations that recreate the conditions of a UWB microwave radar imaging system. The breast tumor numerical produced resemble real tumor morphologies since they are made from breast MRI exams segmentations. Second, the data of the backscattered UWB microwave signals produced by the MMI simulations was used to classify tumors according to their size and histol-ogy, which is relevant to assess potential of UWB microwave radar imaging systems as a reliable alter-native method for the classification of breast tumors in the field of Medical Microwave Imaging. The Classification Algorithms used in this work were Pseudo Linear Discriminant Analysis (Pseudo-LDA), Pseudo Quadratic Discriminant Analysis (pseudo-QDA), and k-Nearest Neighbors (KNN), alongside with a feature extraction algorithm – Principal Component Analysis (PCA). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-26T14:08:01Z 2021-03 2021-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/126696 |
url |
http://hdl.handle.net/10362/126696 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138063748694016 |