Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam

Detalhes bibliográficos
Autor(a) principal: Luu, Thi Phuong Mai
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/2634
Resumo: Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
id RCAP_029d117590d2e44c21d53be27468a0ff
oai_identifier_str oai:run.unl.pt:10362/2634
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap VietnamImage classificationIsodataRule based classificationHybrid classificationDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesWetland is one of the most valuable ecological systems in nature. Wetland habitat is a set of comprehensive information of wetland distribution, wetland habitat types are essential to wetland management programs. Maps of wetland should provide sufficient detail, retain an appropriate scale and be useful for further mapping and inventory work (Queensland wetland framework). Remotely sensed image classification techniques are useful to detect vegetation patterns and species combination in the inaccessible regions. Automated classification procedures are conducted to save the time of the research. The purpose of the research was to develop a hierarchical classification approach that effectively integrate ancillary information into the classification process and combines ISODATA (iterative self-organizing data analysis techniques algorithm) clustering, Maximum likelihood and rule-based classifier. The main goal was to find out the best possible combination or sequence of classifiers for typically classifying wetland habitat types yields higher accuracy than the existing classified wetland map from Landsat ETM data. Three classification schemes were introduced to delineate the wetland habitat types in the idea of comparison among the methods. The results showed the low accuracy of different classification schemes revealing the fact that image classification is still on the way toward a fine proper procedure to get high accuracy result with limited effort to make the investigation on sites. Even though the motivation of the research was to apply an appropriate procedure with acceptable accuracy of classified map image, the results did not achieve a higher accuracy on knowledge-based classification method as it was expected. The possible reasons are the limitation of the image resolution, the ground truth data requirements, and the difficulties of building the rules based on the spectral characteristics of the objects which contain high mix of spectral similarities.Granell-Canut, CarlosRUNLuu, Thi Phuong Mai2010-02-18T14:23:20Z2009-03-062009-03-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/2634enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:07:00Zoai:run.unl.pt:10362/2634Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
title Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
spellingShingle Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
Luu, Thi Phuong Mai
Image classification
Isodata
Rule based classification
Hybrid classification
title_short Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
title_full Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
title_fullStr Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
title_full_unstemmed Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
title_sort Wetland Habitat Studies using various Classification Techniques on Multi-Spectral Landsat Imagery: Case study: Tram chim National Park, Dong Thap Vietnam
author Luu, Thi Phuong Mai
author_facet Luu, Thi Phuong Mai
author_role author
dc.contributor.none.fl_str_mv Granell-Canut, Carlos
RUN
dc.contributor.author.fl_str_mv Luu, Thi Phuong Mai
dc.subject.por.fl_str_mv Image classification
Isodata
Rule based classification
Hybrid classification
topic Image classification
Isodata
Rule based classification
Hybrid classification
description Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
publishDate 2009
dc.date.none.fl_str_mv 2009-03-06
2009-03-06T00:00:00Z
2010-02-18T14:23:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/2634
url http://hdl.handle.net/10362/2634
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545442785755136