Coherent state transforms for spaces of connections
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/11308 |
Resumo: | The Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc. |
id |
RCAP_02ccac81a3a3b6ab1c54882d8c3eced3 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/11308 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Coherent state transforms for spaces of connectionsThe Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc.Academic Press Inc Jnl-Comp SubscriptionsSapientiaAshtekar, ALewandowski, JMarolf, DMourao, JThiemann, T2018-12-07T14:53:00Z1996-021996-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11308eng0022-123610.1006/jfan.1996.0018info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:05Zoai:sapientia.ualg.pt:10400.1/11308Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:49.933748Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Coherent state transforms for spaces of connections |
title |
Coherent state transforms for spaces of connections |
spellingShingle |
Coherent state transforms for spaces of connections Ashtekar, A |
title_short |
Coherent state transforms for spaces of connections |
title_full |
Coherent state transforms for spaces of connections |
title_fullStr |
Coherent state transforms for spaces of connections |
title_full_unstemmed |
Coherent state transforms for spaces of connections |
title_sort |
Coherent state transforms for spaces of connections |
author |
Ashtekar, A |
author_facet |
Ashtekar, A Lewandowski, J Marolf, D Mourao, J Thiemann, T |
author_role |
author |
author2 |
Lewandowski, J Marolf, D Mourao, J Thiemann, T |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Ashtekar, A Lewandowski, J Marolf, D Mourao, J Thiemann, T |
description |
The Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc. |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996-02 1996-02-01T00:00:00Z 2018-12-07T14:53:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/11308 |
url |
http://hdl.handle.net/10400.1/11308 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-1236 10.1006/jfan.1996.0018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Jnl-Comp Subscriptions |
publisher.none.fl_str_mv |
Academic Press Inc Jnl-Comp Subscriptions |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133262510030848 |