Coherent state transforms for spaces of connections

Detalhes bibliográficos
Autor(a) principal: Ashtekar, A
Data de Publicação: 1996
Outros Autores: Lewandowski, J, Marolf, D, Mourao, J, Thiemann, T
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11308
Resumo: The Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc.
id RCAP_02ccac81a3a3b6ab1c54882d8c3eced3
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11308
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Coherent state transforms for spaces of connectionsThe Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc.Academic Press Inc Jnl-Comp SubscriptionsSapientiaAshtekar, ALewandowski, JMarolf, DMourao, JThiemann, T2018-12-07T14:53:00Z1996-021996-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11308eng0022-123610.1006/jfan.1996.0018info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:05Zoai:sapientia.ualg.pt:10400.1/11308Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:49.933748Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Coherent state transforms for spaces of connections
title Coherent state transforms for spaces of connections
spellingShingle Coherent state transforms for spaces of connections
Ashtekar, A
title_short Coherent state transforms for spaces of connections
title_full Coherent state transforms for spaces of connections
title_fullStr Coherent state transforms for spaces of connections
title_full_unstemmed Coherent state transforms for spaces of connections
title_sort Coherent state transforms for spaces of connections
author Ashtekar, A
author_facet Ashtekar, A
Lewandowski, J
Marolf, D
Mourao, J
Thiemann, T
author_role author
author2 Lewandowski, J
Marolf, D
Mourao, J
Thiemann, T
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Ashtekar, A
Lewandowski, J
Marolf, D
Mourao, J
Thiemann, T
description The Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc.
publishDate 1996
dc.date.none.fl_str_mv 1996-02
1996-02-01T00:00:00Z
2018-12-07T14:53:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11308
url http://hdl.handle.net/10400.1/11308
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-1236
10.1006/jfan.1996.0018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Jnl-Comp Subscriptions
publisher.none.fl_str_mv Academic Press Inc Jnl-Comp Subscriptions
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133262510030848