Comparing parametric and semiparametric binary response models

Detalhes bibliográficos
Autor(a) principal: Proença, Isabel
Data de Publicação: 1995
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/28433
Resumo: Binary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading.
id RCAP_030157a9957c505838b0ee9d251e8f56
oai_identifier_str oai:www.repository.utl.pt:10400.5/28433
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Comparing parametric and semiparametric binary response modelsLogit ModelLink FunctionBias CorrectionRestricted ModelLatent Variable ModelBinary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading.SpringerRepositório da Universidade de LisboaProença, Isabel2023-09-06T10:25:24Z19951995-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28433engProença, Isabel .(1995). “Comparing parametric and semiparametric binary response models”. In XploRe: An Interactive Statistical Computing Environment . W. Härdle, S. Klinke and B. A. Turlach (eds). Springer Verlag, chapter 14: pp 251–273 . (search in 2023).10. 9780387944296metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-10T01:31:33Zoai:www.repository.utl.pt:10400.5/28433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:28:47.246194Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Comparing parametric and semiparametric binary response models
title Comparing parametric and semiparametric binary response models
spellingShingle Comparing parametric and semiparametric binary response models
Proença, Isabel
Logit Model
Link Function
Bias Correction
Restricted Model
Latent Variable Model
title_short Comparing parametric and semiparametric binary response models
title_full Comparing parametric and semiparametric binary response models
title_fullStr Comparing parametric and semiparametric binary response models
title_full_unstemmed Comparing parametric and semiparametric binary response models
title_sort Comparing parametric and semiparametric binary response models
author Proença, Isabel
author_facet Proença, Isabel
author_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Proença, Isabel
dc.subject.por.fl_str_mv Logit Model
Link Function
Bias Correction
Restricted Model
Latent Variable Model
topic Logit Model
Link Function
Bias Correction
Restricted Model
Latent Variable Model
description Binary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading.
publishDate 1995
dc.date.none.fl_str_mv 1995
1995-01-01T00:00:00Z
2023-09-06T10:25:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/28433
url http://hdl.handle.net/10400.5/28433
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proença, Isabel .(1995). “Comparing parametric and semiparametric binary response models”. In XploRe: An Interactive Statistical Computing Environment . W. Härdle, S. Klinke and B. A. Turlach (eds). Springer Verlag, chapter 14: pp 251–273 . (search in 2023).
10. 9780387944296
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133555801980928