Comparing parametric and semiparametric binary response models
Autor(a) principal: | |
---|---|
Data de Publicação: | 1995 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/28433 |
Resumo: | Binary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading. |
id |
RCAP_030157a9957c505838b0ee9d251e8f56 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/28433 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparing parametric and semiparametric binary response modelsLogit ModelLink FunctionBias CorrectionRestricted ModelLatent Variable ModelBinary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading.SpringerRepositório da Universidade de LisboaProença, Isabel2023-09-06T10:25:24Z19951995-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28433engProença, Isabel .(1995). “Comparing parametric and semiparametric binary response models”. In XploRe: An Interactive Statistical Computing Environment . W. Härdle, S. Klinke and B. A. Turlach (eds). Springer Verlag, chapter 14: pp 251–273 . (search in 2023).10. 9780387944296metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-10T01:31:33Zoai:www.repository.utl.pt:10400.5/28433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:28:47.246194Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparing parametric and semiparametric binary response models |
title |
Comparing parametric and semiparametric binary response models |
spellingShingle |
Comparing parametric and semiparametric binary response models Proença, Isabel Logit Model Link Function Bias Correction Restricted Model Latent Variable Model |
title_short |
Comparing parametric and semiparametric binary response models |
title_full |
Comparing parametric and semiparametric binary response models |
title_fullStr |
Comparing parametric and semiparametric binary response models |
title_full_unstemmed |
Comparing parametric and semiparametric binary response models |
title_sort |
Comparing parametric and semiparametric binary response models |
author |
Proença, Isabel |
author_facet |
Proença, Isabel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Proença, Isabel |
dc.subject.por.fl_str_mv |
Logit Model Link Function Bias Correction Restricted Model Latent Variable Model |
topic |
Logit Model Link Function Bias Correction Restricted Model Latent Variable Model |
description |
Binary response models are frequently applied in economics and other social sciences. Whereas standard parametric models such as Probit and Logit models still dominate the applied literature, there have been important theoretical advances in semi- and nonparametric approaches to binary response analysis (see Horowitz, 1993a, for an excellent and up-to-date survey). From the perspective of the applied researcher, the development of new techniques that go beyond Logit and Probit are important for several reasons: 1. Economic theory usually does not provide clear guidelines on how a parametric model should be specified. Hence, the assumptions underlying Probit and Logit models are rarely justified on theoretical grounds. Rather, they are motivated by convenience and by reference to “standard practice.” 2. Misspecification of parametric models can cause parameter estimates and inferences based on these parameters to be inconsistent. Moreover, predictions made from misspecified parametric models can be inaccurate and misleading. |
publishDate |
1995 |
dc.date.none.fl_str_mv |
1995 1995-01-01T00:00:00Z 2023-09-06T10:25:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/28433 |
url |
http://hdl.handle.net/10400.5/28433 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proença, Isabel .(1995). “Comparing parametric and semiparametric binary response models”. In XploRe: An Interactive Statistical Computing Environment . W. Härdle, S. Klinke and B. A. Turlach (eds). Springer Verlag, chapter 14: pp 251–273 . (search in 2023). 10. 9780387944296 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133555801980928 |