Canonical forms for free k-semigroups

Detalhes bibliográficos
Autor(a) principal: Costa, José Carlos
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/28883
Resumo: The implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety.
id RCAP_03e4ee9805dd8a85bb0dd9e9e4255b94
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/28883
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Canonical forms for free k-semigroupsPseudovarietyImplicit signaturek-termWord problemMcCammond's normal formFinite semigroupk-semigroupRegular languagekappa-termkappa-semigroup?-semigroup?-termScience & TechnologyThe implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety.European Regional Development Fund, through the programme COMPETEFundação para a Ciência e a Tecnologia (FCT), under the project PEst-C/MAT/UI0013/2011.Jens GustedtUniversidade do MinhoCosta, José Carlos2014-032014-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/28883eng1365-8050http://www.dmtcs.org/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:10:56Zoai:repositorium.sdum.uminho.pt:1822/28883Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:02:38.086697Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Canonical forms for free k-semigroups
title Canonical forms for free k-semigroups
spellingShingle Canonical forms for free k-semigroups
Costa, José Carlos
Pseudovariety
Implicit signature
k-term
Word problem
McCammond's normal form
Finite semigroup
k-semigroup
Regular language
kappa-term
kappa-semigroup
?-semigroup
?-term
Science & Technology
title_short Canonical forms for free k-semigroups
title_full Canonical forms for free k-semigroups
title_fullStr Canonical forms for free k-semigroups
title_full_unstemmed Canonical forms for free k-semigroups
title_sort Canonical forms for free k-semigroups
author Costa, José Carlos
author_facet Costa, José Carlos
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, José Carlos
dc.subject.por.fl_str_mv Pseudovariety
Implicit signature
k-term
Word problem
McCammond's normal form
Finite semigroup
k-semigroup
Regular language
kappa-term
kappa-semigroup
?-semigroup
?-term
Science & Technology
topic Pseudovariety
Implicit signature
k-term
Word problem
McCammond's normal form
Finite semigroup
k-semigroup
Regular language
kappa-term
kappa-semigroup
?-semigroup
?-term
Science & Technology
description The implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
2014-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/28883
url http://hdl.handle.net/1822/28883
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1365-8050
http://www.dmtcs.org/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Jens Gustedt
publisher.none.fl_str_mv Jens Gustedt
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132429408010240