Canonical forms for free k-semigroups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/28883 |
Resumo: | The implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety. |
id |
RCAP_03e4ee9805dd8a85bb0dd9e9e4255b94 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/28883 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Canonical forms for free k-semigroupsPseudovarietyImplicit signaturek-termWord problemMcCammond's normal formFinite semigroupk-semigroupRegular languagekappa-termkappa-semigroup?-semigroup?-termScience & TechnologyThe implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety.European Regional Development Fund, through the programme COMPETEFundação para a Ciência e a Tecnologia (FCT), under the project PEst-C/MAT/UI0013/2011.Jens GustedtUniversidade do MinhoCosta, José Carlos2014-032014-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/28883eng1365-8050http://www.dmtcs.org/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:10:56Zoai:repositorium.sdum.uminho.pt:1822/28883Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:02:38.086697Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Canonical forms for free k-semigroups |
title |
Canonical forms for free k-semigroups |
spellingShingle |
Canonical forms for free k-semigroups Costa, José Carlos Pseudovariety Implicit signature k-term Word problem McCammond's normal form Finite semigroup k-semigroup Regular language kappa-term kappa-semigroup ?-semigroup ?-term Science & Technology |
title_short |
Canonical forms for free k-semigroups |
title_full |
Canonical forms for free k-semigroups |
title_fullStr |
Canonical forms for free k-semigroups |
title_full_unstemmed |
Canonical forms for free k-semigroups |
title_sort |
Canonical forms for free k-semigroups |
author |
Costa, José Carlos |
author_facet |
Costa, José Carlos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Costa, José Carlos |
dc.subject.por.fl_str_mv |
Pseudovariety Implicit signature k-term Word problem McCammond's normal form Finite semigroup k-semigroup Regular language kappa-term kappa-semigroup ?-semigroup ?-term Science & Technology |
topic |
Pseudovariety Implicit signature k-term Word problem McCammond's normal form Finite semigroup k-semigroup Regular language kappa-term kappa-semigroup ?-semigroup ?-term Science & Technology |
description |
The implicit signature kappa consists of the multiplication and the (omega-1)-power. We describe a procedure to transform each kappa-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond's normal form algorithm for omega-termsninterpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Sigma of pseudoidentities. As an application, we deduce that the variety of kappa-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Sigma and that the free kappa-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each omega-term has a unique omega-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for omega-terms interpreted over that pseudovariety. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 2014-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/28883 |
url |
http://hdl.handle.net/1822/28883 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1365-8050 http://www.dmtcs.org/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Jens Gustedt |
publisher.none.fl_str_mv |
Jens Gustedt |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132429408010240 |