Nature-derived Conductive Substrates for Therapeutic Applications

Detalhes bibliográficos
Autor(a) principal: Matos, Filipa da Cruz Fonseca de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162510
Resumo: This thesis investigates the potential of polysaccharide-based conductive substrates, integrated with laser-induced graphene (LIG), as a novel platform for cardiomyocyte culture with the future pro- spect of utilizing it for cardiomyocyte (CM) maturation through electrical stimulation techniques. The methodology involves the fabrication of LIG within different polysaccharide-based matrices, including chitosan, agarose, and alginate, through a single step laser process using a low-cost infrared (CO2) laser. Comprehensive characterization of these composite substrates is conducted, encompassing electrical conductivity, mechanical and chemical properties, and biocompatibility tests. Subsequently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) culture experiments are car- ried out to assess the substrate's effectiveness in supporting cardiomyocyte metabolism, morphology, and functionality. Findings reveal that the LIG produced in polysaccharide films showed sharp characteristic Raman peaks and reasonable sheet resistance values. Besides, the LIG-polysaccharide substrates offered an appropriate conductive environment (≈ 2 . ) for cardiomyocyte culture, promoting cell attachment, viability, and metabolic activity. This research signifies a significant step towards a sustainable and biocompatible substrate for cardiac tissue engineering. Additionally, the study explores the potential for employing electrical stimulation techniques to enhance cardiomyocyte maturation on these substrates. The implications of this research are profound, as it conciliates sustainable biomaterials and car- diac tissue engineering, offering a promising avenue for developing functional cardiac tissue constructs and advanced strategies for cardiac regenerative therapies. In conclusion, this work contributes to the evolving landscape of cardiac tissue engineering and underscores the potential of LIG-polysaccharide substrates as a versatile platform for both cardiomyocyte culture and future maturation techniques through electrical stimulation.
id RCAP_040aa7b64486709ce62177dfb7b95864
oai_identifier_str oai:run.unl.pt:10362/162510
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Nature-derived Conductive Substrates for Therapeutic Applicationshuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)laser induce graphene (LIG)polysaccharide materialssustainabilitybiocompatibilityDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaThis thesis investigates the potential of polysaccharide-based conductive substrates, integrated with laser-induced graphene (LIG), as a novel platform for cardiomyocyte culture with the future pro- spect of utilizing it for cardiomyocyte (CM) maturation through electrical stimulation techniques. The methodology involves the fabrication of LIG within different polysaccharide-based matrices, including chitosan, agarose, and alginate, through a single step laser process using a low-cost infrared (CO2) laser. Comprehensive characterization of these composite substrates is conducted, encompassing electrical conductivity, mechanical and chemical properties, and biocompatibility tests. Subsequently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) culture experiments are car- ried out to assess the substrate's effectiveness in supporting cardiomyocyte metabolism, morphology, and functionality. Findings reveal that the LIG produced in polysaccharide films showed sharp characteristic Raman peaks and reasonable sheet resistance values. Besides, the LIG-polysaccharide substrates offered an appropriate conductive environment (≈ 2 . ) for cardiomyocyte culture, promoting cell attachment, viability, and metabolic activity. This research signifies a significant step towards a sustainable and biocompatible substrate for cardiac tissue engineering. Additionally, the study explores the potential for employing electrical stimulation techniques to enhance cardiomyocyte maturation on these substrates. The implications of this research are profound, as it conciliates sustainable biomaterials and car- diac tissue engineering, offering a promising avenue for developing functional cardiac tissue constructs and advanced strategies for cardiac regenerative therapies. In conclusion, this work contributes to the evolving landscape of cardiac tissue engineering and underscores the potential of LIG-polysaccharide substrates as a versatile platform for both cardiomyocyte culture and future maturation techniques through electrical stimulation.Este trabalho tem como principal objetivo avaliar o potencial de substratos condutores à base de polissacarídeos, integrado com grafeno induzido por laser (LIG), como uma plataforma inovadora para a cultura de cardiomiócitos, com a perspetiva futura de utilizá-los para a maturação de cardiomiócitos por meio de técnicas de estimulação elétrica. A metodologia usada envolve a fabricação de LIG em diferentes filmes de polissacarídeos, no- meadamente de quitosano, agarose e alginato, através da incidência de um laser infravermelho (CO2) de baixo custo. É feita uma caracterização detalhada dos substratos, analisando a condutividade elétrica, propriedades mecânicas e químicas, e testes de biocompatibilidade. Posteriormente, é realizada cultura de cardiomiócitos derivados de células-tronco pluripotentes induzidas humanas (hiPSC-CMs) para ava- liar a eficácia do substrato em promover o crescimento, morfologia e funcionalidade dos cardiomiócitos. Os resultados revelam que os substratos de LIG-polissacarídeo oferecem condutividade adequada para a cultura de cardiomiócitos ≈ 2 . , promovendo a sua adesão, viabilidade e metabolismo. Esta pesquisa representa um passo significativo para a engenharia de tecido cardíaco, uma vez que comprova a fabricação de substratos sustentáveis e biocompatíveis. Além disso, o estudo explora o potencial dos substratos em técnicas de estimulação elétrica para aprimorar a maturação de cardiomiócitos. Os desenvolvimentos desta pesquisa são úteis, pois explora o uso de biomateriais sustentáveis em engenharia de tecido cardíaco, oferecendo uma direção promissora para o desenvolvimento de tecido cardíaco funcional e estratégias avançadas para terapias regenerativas cardíacas. Em conclusão, este trabalho contribui para a evolução da engenharia de tecido cardíaco e destaca o potencial dos substratos de LIG-polissacarídeo como uma plataforma versátil tanto para a cultura de cardiomiócitos como para futuras técnicas de maturação por estimulação elétrica.Almeida, HenriqueRUNMatos, Filipa da Cruz Fonseca de2024-01-19T10:24:40Z2023-122023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/162510enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:08Zoai:run.unl.pt:10362/162510Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:50.690223Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Nature-derived Conductive Substrates for Therapeutic Applications
title Nature-derived Conductive Substrates for Therapeutic Applications
spellingShingle Nature-derived Conductive Substrates for Therapeutic Applications
Matos, Filipa da Cruz Fonseca de
human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
laser induce graphene (LIG)
polysaccharide materials
sustainability
biocompatibility
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short Nature-derived Conductive Substrates for Therapeutic Applications
title_full Nature-derived Conductive Substrates for Therapeutic Applications
title_fullStr Nature-derived Conductive Substrates for Therapeutic Applications
title_full_unstemmed Nature-derived Conductive Substrates for Therapeutic Applications
title_sort Nature-derived Conductive Substrates for Therapeutic Applications
author Matos, Filipa da Cruz Fonseca de
author_facet Matos, Filipa da Cruz Fonseca de
author_role author
dc.contributor.none.fl_str_mv Almeida, Henrique
RUN
dc.contributor.author.fl_str_mv Matos, Filipa da Cruz Fonseca de
dc.subject.por.fl_str_mv human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
laser induce graphene (LIG)
polysaccharide materials
sustainability
biocompatibility
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
laser induce graphene (LIG)
polysaccharide materials
sustainability
biocompatibility
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description This thesis investigates the potential of polysaccharide-based conductive substrates, integrated with laser-induced graphene (LIG), as a novel platform for cardiomyocyte culture with the future pro- spect of utilizing it for cardiomyocyte (CM) maturation through electrical stimulation techniques. The methodology involves the fabrication of LIG within different polysaccharide-based matrices, including chitosan, agarose, and alginate, through a single step laser process using a low-cost infrared (CO2) laser. Comprehensive characterization of these composite substrates is conducted, encompassing electrical conductivity, mechanical and chemical properties, and biocompatibility tests. Subsequently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) culture experiments are car- ried out to assess the substrate's effectiveness in supporting cardiomyocyte metabolism, morphology, and functionality. Findings reveal that the LIG produced in polysaccharide films showed sharp characteristic Raman peaks and reasonable sheet resistance values. Besides, the LIG-polysaccharide substrates offered an appropriate conductive environment (≈ 2 . ) for cardiomyocyte culture, promoting cell attachment, viability, and metabolic activity. This research signifies a significant step towards a sustainable and biocompatible substrate for cardiac tissue engineering. Additionally, the study explores the potential for employing electrical stimulation techniques to enhance cardiomyocyte maturation on these substrates. The implications of this research are profound, as it conciliates sustainable biomaterials and car- diac tissue engineering, offering a promising avenue for developing functional cardiac tissue constructs and advanced strategies for cardiac regenerative therapies. In conclusion, this work contributes to the evolving landscape of cardiac tissue engineering and underscores the potential of LIG-polysaccharide substrates as a versatile platform for both cardiomyocyte culture and future maturation techniques through electrical stimulation.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
2023-12-01T00:00:00Z
2024-01-19T10:24:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162510
url http://hdl.handle.net/10362/162510
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138168866340864