Predictive maintenance based on log analysis: A systematic review

Detalhes bibliográficos
Autor(a) principal: Barata, Luís
Data de Publicação: 2024
Outros Autores: Sequeira, Sérgio, Lopes, Eurico
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.11/9080
Resumo: In today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification.
id RCAP_0445cb0e67e315b9ddd5a14d5bc0327c
oai_identifier_str oai:repositorio.ipcb.pt:10400.11/9080
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predictive maintenance based on log analysis: A systematic reviewPredictive maintenanceLog analysisLog filesPredictive algorithmsPredictive Maintenance based on Log AnalysisIn today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification.Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, BrazilRepositório Científico do Instituto Politécnico de Castelo BrancoBarata, LuísSequeira, SérgioLopes, Eurico2024-07-30T11:38:47Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/9080engBARATA, L. ; SEQUEIRA, S. ; LOPES, E. (2024) - Predictive maintenance based on log analysis: A systematic review. Revista de Informática Teórica e Aplicada. 31:1, p. 60–67. DOI: https://doi.org/10.22456/2175-2745.1304652175-2745https://doi.org/10.22456/2175-2745.130465info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-21T01:46:02Zoai:repositorio.ipcb.pt:10400.11/9080Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-21T01:46:02Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predictive maintenance based on log analysis: A systematic review
title Predictive maintenance based on log analysis: A systematic review
spellingShingle Predictive maintenance based on log analysis: A systematic review
Barata, Luís
Predictive maintenance
Log analysis
Log files
Predictive algorithms
Predictive Maintenance based on Log Analysis
title_short Predictive maintenance based on log analysis: A systematic review
title_full Predictive maintenance based on log analysis: A systematic review
title_fullStr Predictive maintenance based on log analysis: A systematic review
title_full_unstemmed Predictive maintenance based on log analysis: A systematic review
title_sort Predictive maintenance based on log analysis: A systematic review
author Barata, Luís
author_facet Barata, Luís
Sequeira, Sérgio
Lopes, Eurico
author_role author
author2 Sequeira, Sérgio
Lopes, Eurico
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Castelo Branco
dc.contributor.author.fl_str_mv Barata, Luís
Sequeira, Sérgio
Lopes, Eurico
dc.subject.por.fl_str_mv Predictive maintenance
Log analysis
Log files
Predictive algorithms
Predictive Maintenance based on Log Analysis
topic Predictive maintenance
Log analysis
Log files
Predictive algorithms
Predictive Maintenance based on Log Analysis
description In today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-30T11:38:47Z
2024
2024-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.11/9080
url http://hdl.handle.net/10400.11/9080
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv BARATA, L. ; SEQUEIRA, S. ; LOPES, E. (2024) - Predictive maintenance based on log analysis: A systematic review. Revista de Informática Teórica e Aplicada. 31:1, p. 60–67. DOI: https://doi.org/10.22456/2175-2745.130465
2175-2745
https://doi.org/10.22456/2175-2745.130465
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, Brazil
publisher.none.fl_str_mv Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, Brazil
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546681400426496