Predictive maintenance based on log analysis: A systematic review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.11/9080 |
Resumo: | In today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification. |
id |
RCAP_0445cb0e67e315b9ddd5a14d5bc0327c |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/9080 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predictive maintenance based on log analysis: A systematic reviewPredictive maintenanceLog analysisLog filesPredictive algorithmsPredictive Maintenance based on Log AnalysisIn today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification.Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, BrazilRepositório Científico do Instituto Politécnico de Castelo BrancoBarata, LuísSequeira, SérgioLopes, Eurico2024-07-30T11:38:47Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/9080engBARATA, L. ; SEQUEIRA, S. ; LOPES, E. (2024) - Predictive maintenance based on log analysis: A systematic review. Revista de Informática Teórica e Aplicada. 31:1, p. 60–67. DOI: https://doi.org/10.22456/2175-2745.1304652175-2745https://doi.org/10.22456/2175-2745.130465info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-21T01:46:02Zoai:repositorio.ipcb.pt:10400.11/9080Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-21T01:46:02Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predictive maintenance based on log analysis: A systematic review |
title |
Predictive maintenance based on log analysis: A systematic review |
spellingShingle |
Predictive maintenance based on log analysis: A systematic review Barata, Luís Predictive maintenance Log analysis Log files Predictive algorithms Predictive Maintenance based on Log Analysis |
title_short |
Predictive maintenance based on log analysis: A systematic review |
title_full |
Predictive maintenance based on log analysis: A systematic review |
title_fullStr |
Predictive maintenance based on log analysis: A systematic review |
title_full_unstemmed |
Predictive maintenance based on log analysis: A systematic review |
title_sort |
Predictive maintenance based on log analysis: A systematic review |
author |
Barata, Luís |
author_facet |
Barata, Luís Sequeira, Sérgio Lopes, Eurico |
author_role |
author |
author2 |
Sequeira, Sérgio Lopes, Eurico |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Barata, Luís Sequeira, Sérgio Lopes, Eurico |
dc.subject.por.fl_str_mv |
Predictive maintenance Log analysis Log files Predictive algorithms Predictive Maintenance based on Log Analysis |
topic |
Predictive maintenance Log analysis Log files Predictive algorithms Predictive Maintenance based on Log Analysis |
description |
In today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-30T11:38:47Z 2024 2024-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/9080 |
url |
http://hdl.handle.net/10400.11/9080 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
BARATA, L. ; SEQUEIRA, S. ; LOPES, E. (2024) - Predictive maintenance based on log analysis: A systematic review. Revista de Informática Teórica e Aplicada. 31:1, p. 60–67. DOI: https://doi.org/10.22456/2175-2745.130465 2175-2745 https://doi.org/10.22456/2175-2745.130465 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, Brazil |
publisher.none.fl_str_mv |
Institute of Informatics at Federal University of Rio Grande do Sul - UFRGS, Brazil |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546681400426496 |