Approximating the conformal map of elongated quadrilaterals by domain decomposition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/1497 |
Resumo: | Let $Q:=\{ \Omega;z_1,z_2,z_3,z_4\}$ be a quadrilateral consisting of a Jordan domain $\Omega$ and four points $z_1$, $z_2$, $z_3$, $z_4$ in counterclockwise order on $\partial \Omega$ and let $m(Q)$ be the conformal module of $Q$. Then, $Q$ is conformally equivalent to the rectangular quadrilateral $\{R_{m(Q)};0,1,1+im(Q),im(Q)\}, $, where $ R_{m(Q)}:=\{(\xi,\eta):0<\xi<1, \ 0 <\eta<m(Q)\},$ in the sense that there exists a unique conformal map $f: \Omega \rightarrow R_{m(Q)}$ that takes the four points $z_1$, $z_2$, $z_3$, $z_4$, respectively onto the four vertices $0$, $1$, $1+im(Q)$, $im(Q)$ of $R_{m(Q)}$. In this paper we consider the use of a domain decomposition method (DDM) for computing approximations to the conformal map $f$, in cases where the quadrilateral $Q$ is "long". The method has been studied already but, mainly, in connection with the computation of $m(Q)$. Here we consider certain recent results of Laugesen, for the DDM approximation of the conformal map $f: \Omega \rightarrow R_{m(Q)}$ associated with a special class of quadrilaterals (viz. quadrilaterals whose two non-adjacent boundary segments $(z_2,z_3)$ and $(z_4,z_1)$ are parallel straight lines) and seek to extend these results to more general quadrilaterals. By making use of the available DDM theory for conformal modules, we show that the corresponding theory for $f$ can, indeed, be extended to a much wider class of quadrilaterals than those considered by Laugesen. |
id |
RCAP_04ca7766e1e4e60ac68472ae5eb1a2b3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/1497 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Approximating the conformal map of elongated quadrilaterals by domain decompositionNumerical conformal mappingQuadrilateralsDomain decompositionLet $Q:=\{ \Omega;z_1,z_2,z_3,z_4\}$ be a quadrilateral consisting of a Jordan domain $\Omega$ and four points $z_1$, $z_2$, $z_3$, $z_4$ in counterclockwise order on $\partial \Omega$ and let $m(Q)$ be the conformal module of $Q$. Then, $Q$ is conformally equivalent to the rectangular quadrilateral $\{R_{m(Q)};0,1,1+im(Q),im(Q)\}, $, where $ R_{m(Q)}:=\{(\xi,\eta):0<\xi<1, \ 0 <\eta<m(Q)\},$ in the sense that there exists a unique conformal map $f: \Omega \rightarrow R_{m(Q)}$ that takes the four points $z_1$, $z_2$, $z_3$, $z_4$, respectively onto the four vertices $0$, $1$, $1+im(Q)$, $im(Q)$ of $R_{m(Q)}$. In this paper we consider the use of a domain decomposition method (DDM) for computing approximations to the conformal map $f$, in cases where the quadrilateral $Q$ is "long". The method has been studied already but, mainly, in connection with the computation of $m(Q)$. Here we consider certain recent results of Laugesen, for the DDM approximation of the conformal map $f: \Omega \rightarrow R_{m(Q)}$ associated with a special class of quadrilaterals (viz. quadrilaterals whose two non-adjacent boundary segments $(z_2,z_3)$ and $(z_4,z_1)$ are parallel straight lines) and seek to extend these results to more general quadrilaterals. By making use of the available DDM theory for conformal modules, we show that the corresponding theory for $f$ can, indeed, be extended to a much wider class of quadrilaterals than those considered by Laugesen.Springer VerlagUniversidade do MinhoFalcão, M. I.Papamichael, N.Stylianopoulos, N.S.20012001-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1497eng"Constructive approximation". ISSN 0176-4276. 17 (2001) 589-617.0176-4276info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:18:09Zoai:repositorium.sdum.uminho.pt:1822/1497Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:10:54.420099Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
title |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
spellingShingle |
Approximating the conformal map of elongated quadrilaterals by domain decomposition Falcão, M. I. Numerical conformal mapping Quadrilaterals Domain decomposition |
title_short |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
title_full |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
title_fullStr |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
title_full_unstemmed |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
title_sort |
Approximating the conformal map of elongated quadrilaterals by domain decomposition |
author |
Falcão, M. I. |
author_facet |
Falcão, M. I. Papamichael, N. Stylianopoulos, N.S. |
author_role |
author |
author2 |
Papamichael, N. Stylianopoulos, N.S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Falcão, M. I. Papamichael, N. Stylianopoulos, N.S. |
dc.subject.por.fl_str_mv |
Numerical conformal mapping Quadrilaterals Domain decomposition |
topic |
Numerical conformal mapping Quadrilaterals Domain decomposition |
description |
Let $Q:=\{ \Omega;z_1,z_2,z_3,z_4\}$ be a quadrilateral consisting of a Jordan domain $\Omega$ and four points $z_1$, $z_2$, $z_3$, $z_4$ in counterclockwise order on $\partial \Omega$ and let $m(Q)$ be the conformal module of $Q$. Then, $Q$ is conformally equivalent to the rectangular quadrilateral $\{R_{m(Q)};0,1,1+im(Q),im(Q)\}, $, where $ R_{m(Q)}:=\{(\xi,\eta):0<\xi<1, \ 0 <\eta<m(Q)\},$ in the sense that there exists a unique conformal map $f: \Omega \rightarrow R_{m(Q)}$ that takes the four points $z_1$, $z_2$, $z_3$, $z_4$, respectively onto the four vertices $0$, $1$, $1+im(Q)$, $im(Q)$ of $R_{m(Q)}$. In this paper we consider the use of a domain decomposition method (DDM) for computing approximations to the conformal map $f$, in cases where the quadrilateral $Q$ is "long". The method has been studied already but, mainly, in connection with the computation of $m(Q)$. Here we consider certain recent results of Laugesen, for the DDM approximation of the conformal map $f: \Omega \rightarrow R_{m(Q)}$ associated with a special class of quadrilaterals (viz. quadrilaterals whose two non-adjacent boundary segments $(z_2,z_3)$ and $(z_4,z_1)$ are parallel straight lines) and seek to extend these results to more general quadrilaterals. By making use of the available DDM theory for conformal modules, we show that the corresponding theory for $f$ can, indeed, be extended to a much wider class of quadrilaterals than those considered by Laugesen. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 2001-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/1497 |
url |
http://hdl.handle.net/1822/1497 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Constructive approximation". ISSN 0176-4276. 17 (2001) 589-617. 0176-4276 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132539373223936 |