Short-Term Electricity Demand Forecasting with Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/120626 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_05841080a5c5aafa9018e8905757f35f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/120626 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Short-Term Electricity Demand Forecasting with Machine LearningShort-Term Load Forecasting;Machine Learning;Weekly forecast;Electricity market;Extreme Gradient Boosting Regressor (XGBoost)Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsAn accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units’ planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This project proposes a set of machine learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model’s interpretation, which provided a relevant additional result, the features’ importance in the forecasting.António, Nuno Miguel da ConceiçãoRUNMadrid, Ernesto Javier Aguilar2021-07-07T11:44:07Z2021-06-232021-06-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/120626TID:202743420enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:03:07Zoai:run.unl.pt:10362/120626Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:24.539905Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Short-Term Electricity Demand Forecasting with Machine Learning |
title |
Short-Term Electricity Demand Forecasting with Machine Learning |
spellingShingle |
Short-Term Electricity Demand Forecasting with Machine Learning Madrid, Ernesto Javier Aguilar Short-Term Load Forecasting; Machine Learning; Weekly forecast; Electricity market; Extreme Gradient Boosting Regressor (XGBoost) |
title_short |
Short-Term Electricity Demand Forecasting with Machine Learning |
title_full |
Short-Term Electricity Demand Forecasting with Machine Learning |
title_fullStr |
Short-Term Electricity Demand Forecasting with Machine Learning |
title_full_unstemmed |
Short-Term Electricity Demand Forecasting with Machine Learning |
title_sort |
Short-Term Electricity Demand Forecasting with Machine Learning |
author |
Madrid, Ernesto Javier Aguilar |
author_facet |
Madrid, Ernesto Javier Aguilar |
author_role |
author |
dc.contributor.none.fl_str_mv |
António, Nuno Miguel da Conceição RUN |
dc.contributor.author.fl_str_mv |
Madrid, Ernesto Javier Aguilar |
dc.subject.por.fl_str_mv |
Short-Term Load Forecasting; Machine Learning; Weekly forecast; Electricity market; Extreme Gradient Boosting Regressor (XGBoost) |
topic |
Short-Term Load Forecasting; Machine Learning; Weekly forecast; Electricity market; Extreme Gradient Boosting Regressor (XGBoost) |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-07T11:44:07Z 2021-06-23 2021-06-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/120626 TID:202743420 |
url |
http://hdl.handle.net/10362/120626 |
identifier_str_mv |
TID:202743420 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138051610378240 |