Scenario generation for electric vehicles' uncertain behavior in a smart city environment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/6500 http://dx.doi.org/10.1016/j.energy.2016.06.011 |
Resumo: | This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location. |
id |
RCAP_05c82d80f27649d9cbde00a68aed5419 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/6500 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Scenario generation for electric vehicles' uncertain behavior in a smart city environmentThis paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location.2018-01-16T19:17:03Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6500http://dx.doi.org/10.1016/j.energy.2016.06.011engSoares,JBorges,NGhazvini,MAFVale,ZPaulo Moura Oliveirainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:31Zoai:repositorio.inesctec.pt:123456789/6500Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:15.924759Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
title |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
spellingShingle |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment Soares,J |
title_short |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
title_full |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
title_fullStr |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
title_full_unstemmed |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
title_sort |
Scenario generation for electric vehicles' uncertain behavior in a smart city environment |
author |
Soares,J |
author_facet |
Soares,J Borges,N Ghazvini,MAF Vale,Z Paulo Moura Oliveira |
author_role |
author |
author2 |
Borges,N Ghazvini,MAF Vale,Z Paulo Moura Oliveira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Soares,J Borges,N Ghazvini,MAF Vale,Z Paulo Moura Oliveira |
description |
This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2018-01-16T19:17:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/6500 http://dx.doi.org/10.1016/j.energy.2016.06.011 |
url |
http://repositorio.inesctec.pt/handle/123456789/6500 http://dx.doi.org/10.1016/j.energy.2016.06.011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131606913384448 |