SLFS: Semi-supervised light-field foreground-background segmentation

Detalhes bibliográficos
Autor(a) principal: Hamad, M.
Data de Publicação: 2021
Outros Autores: Conti, C., Almeida, A. M. de., Nunes, P., Soares, L. D.
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/23659
Resumo: Efficient segmentation is a fundamental problem in computer vision and image processing. Achieving accurate segmentation for 4D light field images is a challenging task due to the huge amount of data involved and the intrinsic redundancy in this type of images. While automatic image segmentation is usually challenging, and because regions of interest are different for different users or tasks, this paper proposes an improved semi-supervised segmentation approach for 4D light field images based on an efficient graph structure and user's scribbles. The recent view-consistent 4D light field superpixels algorithm proposed by Khan et al. is used as an automatic pre-processing step to ensure spatio-angular consistency and to represent the image graph efficiently. Then, segmentation is achieved via graph-cut optimization. Experimental results for synthetic and real light field images indicate that the proposed approach can extract objects consistently across views, and thus it can be used in applications such as augmented reality applications or object-based coding with few user interactions.
id RCAP_05d8fd907c4c102e3a8abf7f38576914
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/23659
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling SLFS: Semi-supervised light-field foreground-background segmentationLight field segmentationForeground-background segmentationSuperpixelsGraph-cutSemi-supervised segmentationEfficient segmentation is a fundamental problem in computer vision and image processing. Achieving accurate segmentation for 4D light field images is a challenging task due to the huge amount of data involved and the intrinsic redundancy in this type of images. While automatic image segmentation is usually challenging, and because regions of interest are different for different users or tasks, this paper proposes an improved semi-supervised segmentation approach for 4D light field images based on an efficient graph structure and user's scribbles. The recent view-consistent 4D light field superpixels algorithm proposed by Khan et al. is used as an automatic pre-processing step to ensure spatio-angular consistency and to represent the image graph efficiently. Then, segmentation is achieved via graph-cut optimization. Experimental results for synthetic and real light field images indicate that the proposed approach can extract objects consistently across views, and thus it can be used in applications such as augmented reality applications or object-based coding with few user interactions.IEEE2021-12-07T12:17:52Z2021-01-01T00:00:00Z20212022-02-12T16:33:48Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/23659eng978-1-6654-1588-010.1109/ConfTELE50222.2021.9435461Hamad, M.Conti, C.Almeida, A. M. de.Nunes, P.Soares, L. D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:26:20Zoai:repositorio.iscte-iul.pt:10071/23659Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:26:20Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv SLFS: Semi-supervised light-field foreground-background segmentation
title SLFS: Semi-supervised light-field foreground-background segmentation
spellingShingle SLFS: Semi-supervised light-field foreground-background segmentation
Hamad, M.
Light field segmentation
Foreground-background segmentation
Superpixels
Graph-cut
Semi-supervised segmentation
title_short SLFS: Semi-supervised light-field foreground-background segmentation
title_full SLFS: Semi-supervised light-field foreground-background segmentation
title_fullStr SLFS: Semi-supervised light-field foreground-background segmentation
title_full_unstemmed SLFS: Semi-supervised light-field foreground-background segmentation
title_sort SLFS: Semi-supervised light-field foreground-background segmentation
author Hamad, M.
author_facet Hamad, M.
Conti, C.
Almeida, A. M. de.
Nunes, P.
Soares, L. D.
author_role author
author2 Conti, C.
Almeida, A. M. de.
Nunes, P.
Soares, L. D.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Hamad, M.
Conti, C.
Almeida, A. M. de.
Nunes, P.
Soares, L. D.
dc.subject.por.fl_str_mv Light field segmentation
Foreground-background segmentation
Superpixels
Graph-cut
Semi-supervised segmentation
topic Light field segmentation
Foreground-background segmentation
Superpixels
Graph-cut
Semi-supervised segmentation
description Efficient segmentation is a fundamental problem in computer vision and image processing. Achieving accurate segmentation for 4D light field images is a challenging task due to the huge amount of data involved and the intrinsic redundancy in this type of images. While automatic image segmentation is usually challenging, and because regions of interest are different for different users or tasks, this paper proposes an improved semi-supervised segmentation approach for 4D light field images based on an efficient graph structure and user's scribbles. The recent view-consistent 4D light field superpixels algorithm proposed by Khan et al. is used as an automatic pre-processing step to ensure spatio-angular consistency and to represent the image graph efficiently. Then, segmentation is achieved via graph-cut optimization. Experimental results for synthetic and real light field images indicate that the proposed approach can extract objects consistently across views, and thus it can be used in applications such as augmented reality applications or object-based coding with few user interactions.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-07T12:17:52Z
2021-01-01T00:00:00Z
2021
2022-02-12T16:33:48Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/23659
url http://hdl.handle.net/10071/23659
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-6654-1588-0
10.1109/ConfTELE50222.2021.9435461
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546467953344512