Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion

Detalhes bibliográficos
Autor(a) principal: Mendes, R.P.G.
Data de Publicação: 2016
Outros Autores: Calado, M. do Rosário, Mariano, S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/7062
Resumo: This paper addresses the optimization of the linear switched reluctance generator with tubular topology to be applied in a sea wave energy conversion system. Two new algorithms to optimize the geometry of the generators are proposed. The algorithms are based on both particle swarm and Box´s complex optimization methods. The optimization procedures consist of a multidimensional optimal value search. First the initial variable vectors are specified throughout the feasible search space. Then, an iterative procedure is applied with the goal of finding the variable values that minimize the objective function. The proposed algorithms are suitable for the optimization problem considered since the objective function is highly nonlinear and not analytically defined, as evaluated using a finite element analysis based software, and show very good performance. A factor that characterizes the generation capabilities is also defined and the obtained optimized generators are compared.
id RCAP_06838e6d3eb3f6578d53e76237484dbd
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/7062
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversionBox׳s Complex MethodLinear switched reluctance generatorsMulti-objective designParticle swarm optimizationWave energy conversionThis paper addresses the optimization of the linear switched reluctance generator with tubular topology to be applied in a sea wave energy conversion system. Two new algorithms to optimize the geometry of the generators are proposed. The algorithms are based on both particle swarm and Box´s complex optimization methods. The optimization procedures consist of a multidimensional optimal value search. First the initial variable vectors are specified throughout the feasible search space. Then, an iterative procedure is applied with the goal of finding the variable values that minimize the objective function. The proposed algorithms are suitable for the optimization problem considered since the objective function is highly nonlinear and not analytically defined, as evaluated using a finite element analysis based software, and show very good performance. A factor that characterizes the generation capabilities is also defined and the obtained optimized generators are compared.ElsevieruBibliorumMendes, R.P.G.Calado, M. do RosárioMariano, S.2019-05-02T15:11:52Z2016-062016-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7062eng2210650210.1016/j.swevo.2015.12.003metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-27T12:22:29Zoai:ubibliorum.ubi.pt:10400.6/7062Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-27T12:22:29Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
title Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
spellingShingle Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
Mendes, R.P.G.
Box׳s Complex Method
Linear switched reluctance generators
Multi-objective design
Particle swarm optimization
Wave energy conversion
title_short Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
title_full Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
title_fullStr Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
title_full_unstemmed Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
title_sort Particle swarm and Box׳s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion
author Mendes, R.P.G.
author_facet Mendes, R.P.G.
Calado, M. do Rosário
Mariano, S.
author_role author
author2 Calado, M. do Rosário
Mariano, S.
author2_role author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Mendes, R.P.G.
Calado, M. do Rosário
Mariano, S.
dc.subject.por.fl_str_mv Box׳s Complex Method
Linear switched reluctance generators
Multi-objective design
Particle swarm optimization
Wave energy conversion
topic Box׳s Complex Method
Linear switched reluctance generators
Multi-objective design
Particle swarm optimization
Wave energy conversion
description This paper addresses the optimization of the linear switched reluctance generator with tubular topology to be applied in a sea wave energy conversion system. Two new algorithms to optimize the geometry of the generators are proposed. The algorithms are based on both particle swarm and Box´s complex optimization methods. The optimization procedures consist of a multidimensional optimal value search. First the initial variable vectors are specified throughout the feasible search space. Then, an iterative procedure is applied with the goal of finding the variable values that minimize the objective function. The proposed algorithms are suitable for the optimization problem considered since the objective function is highly nonlinear and not analytically defined, as evaluated using a finite element analysis based software, and show very good performance. A factor that characterizes the generation capabilities is also defined and the obtained optimized generators are compared.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
2016-06-01T00:00:00Z
2019-05-02T15:11:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/7062
url http://hdl.handle.net/10400.6/7062
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 22106502
10.1016/j.swevo.2015.12.003
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549624331730944