Evaluation of receptor and chemical transport models for PM10 source apportionment

Detalhes bibliográficos
Autor(a) principal: Belis, C.A.
Data de Publicação: 2020
Outros Autores: Pernigotti, D., Pirovano, G., Favez, O., Jaffrezo, J.L., Kuenen, J., Denier van Der Gon, H., Reizer, M., Riffault, V., Alleman, L.Y., Almeida, M., Amato, F., Angyal, A., Argyropoulos, G., Bande, S., Beslic, I., Besombes, J.-L., Bove, M.C., Brotto, P., Calori, G., Cesari, D., Colombi, C., Contini, D., De Gennaro, G., Di Gilio, A., Diapouli, E., El Haddad, I., Elbern, H., Eleftheriadis, K., Ferreira, J., Vivanco, M. Garcia, Gilardoni, S., Golly, B., Hellebust, S., Hopke, P.K., Izadmanesh, Y., Jorquera, H., Krajsek, K., Kranenburg, R., Lazzeri, P., Lenartz, F., Lucarelli, F., Maciejewska, K., Manders, A., Manousakas, M., Masiol, M., Mircea, M., Mooibroek, D., Nava, S., Oliveira, D., Paglione, M., Pandolfi, M., Perrone, M., Petralia, E., Pietrodangelo, A., Pillon, S., Pokorna, P., Prati, P., Salameh, D., Samara, C., Samek, L., Saraga, D., Sauvage, S., Schaap, M., Scotto, F., Sega, K., Siour, G., Tauler, R., Valli, G., Vecchi, R., Venturini, E., Vestenius, M., Waked, A., Yubero, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/37185
Resumo: In this study, the performance of two types of source apportionment models was evaluated by assessing the results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 (Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre-established acceptability criteria. By involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those measured directly at the source contributed to corroborate the consistency of the tested model results. The most commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross validating the results of these two families of models.
id RCAP_06891e0b845beade9b43a7ed300af37c
oai_identifier_str oai:ria.ua.pt:10773/37185
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of receptor and chemical transport models for PM10 source apportionmentSource apportionmentPM10Receptor modelsChemical transport modelsIntercomparisonLensIn this study, the performance of two types of source apportionment models was evaluated by assessing the results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 (Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre-established acceptability criteria. By involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those measured directly at the source contributed to corroborate the consistency of the tested model results. The most commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross validating the results of these two families of models.Elsevier2023-04-18T15:38:57Z2020-01-01T00:00:00Z2020-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37185eng2590-162110.1016/j.aeaoa.2019.100053Belis, C.A.Pernigotti, D.Pirovano, G.Favez, O.Jaffrezo, J.L.Kuenen, J.Denier van Der Gon, H.Reizer, M.Riffault, V.Alleman, L.Y.Almeida, M.Amato, F.Angyal, A.Argyropoulos, G.Bande, S.Beslic, I.Besombes, J.-L.Bove, M.C.Brotto, P.Calori, G.Cesari, D.Colombi, C.Contini, D.De Gennaro, G.Di Gilio, A.Diapouli, E.El Haddad, I.Elbern, H.Eleftheriadis, K.Ferreira, J.Vivanco, M. GarciaGilardoni, S.Golly, B.Hellebust, S.Hopke, P.K.Izadmanesh, Y.Jorquera, H.Krajsek, K.Kranenburg, R.Lazzeri, P.Lenartz, F.Lucarelli, F.Maciejewska, K.Manders, A.Manousakas, M.Masiol, M.Mircea, M.Mooibroek, D.Nava, S.Oliveira, D.Paglione, M.Pandolfi, M.Perrone, M.Petralia, E.Pietrodangelo, A.Pillon, S.Pokorna, P.Prati, P.Salameh, D.Samara, C.Samek, L.Saraga, D.Sauvage, S.Schaap, M.Scotto, F.Sega, K.Siour, G.Tauler, R.Valli, G.Vecchi, R.Venturini, E.Vestenius, M.Waked, A.Yubero, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:11:41Zoai:ria.ua.pt:10773/37185Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:48.315765Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of receptor and chemical transport models for PM10 source apportionment
title Evaluation of receptor and chemical transport models for PM10 source apportionment
spellingShingle Evaluation of receptor and chemical transport models for PM10 source apportionment
Belis, C.A.
Source apportionment
PM10
Receptor models
Chemical transport models
Intercomparison
Lens
title_short Evaluation of receptor and chemical transport models for PM10 source apportionment
title_full Evaluation of receptor and chemical transport models for PM10 source apportionment
title_fullStr Evaluation of receptor and chemical transport models for PM10 source apportionment
title_full_unstemmed Evaluation of receptor and chemical transport models for PM10 source apportionment
title_sort Evaluation of receptor and chemical transport models for PM10 source apportionment
author Belis, C.A.
author_facet Belis, C.A.
Pernigotti, D.
Pirovano, G.
Favez, O.
Jaffrezo, J.L.
Kuenen, J.
Denier van Der Gon, H.
Reizer, M.
Riffault, V.
Alleman, L.Y.
Almeida, M.
Amato, F.
Angyal, A.
Argyropoulos, G.
Bande, S.
Beslic, I.
Besombes, J.-L.
Bove, M.C.
Brotto, P.
Calori, G.
Cesari, D.
Colombi, C.
Contini, D.
De Gennaro, G.
Di Gilio, A.
Diapouli, E.
El Haddad, I.
Elbern, H.
Eleftheriadis, K.
Ferreira, J.
Vivanco, M. Garcia
Gilardoni, S.
Golly, B.
Hellebust, S.
Hopke, P.K.
Izadmanesh, Y.
Jorquera, H.
Krajsek, K.
Kranenburg, R.
Lazzeri, P.
Lenartz, F.
Lucarelli, F.
Maciejewska, K.
Manders, A.
Manousakas, M.
Masiol, M.
Mircea, M.
Mooibroek, D.
Nava, S.
Oliveira, D.
Paglione, M.
Pandolfi, M.
Perrone, M.
Petralia, E.
Pietrodangelo, A.
Pillon, S.
Pokorna, P.
Prati, P.
Salameh, D.
Samara, C.
Samek, L.
Saraga, D.
Sauvage, S.
Schaap, M.
Scotto, F.
Sega, K.
Siour, G.
Tauler, R.
Valli, G.
Vecchi, R.
Venturini, E.
Vestenius, M.
Waked, A.
Yubero, E.
author_role author
author2 Pernigotti, D.
Pirovano, G.
Favez, O.
Jaffrezo, J.L.
Kuenen, J.
Denier van Der Gon, H.
Reizer, M.
Riffault, V.
Alleman, L.Y.
Almeida, M.
Amato, F.
Angyal, A.
Argyropoulos, G.
Bande, S.
Beslic, I.
Besombes, J.-L.
Bove, M.C.
Brotto, P.
Calori, G.
Cesari, D.
Colombi, C.
Contini, D.
De Gennaro, G.
Di Gilio, A.
Diapouli, E.
El Haddad, I.
Elbern, H.
Eleftheriadis, K.
Ferreira, J.
Vivanco, M. Garcia
Gilardoni, S.
Golly, B.
Hellebust, S.
Hopke, P.K.
Izadmanesh, Y.
Jorquera, H.
Krajsek, K.
Kranenburg, R.
Lazzeri, P.
Lenartz, F.
Lucarelli, F.
Maciejewska, K.
Manders, A.
Manousakas, M.
Masiol, M.
Mircea, M.
Mooibroek, D.
Nava, S.
Oliveira, D.
Paglione, M.
Pandolfi, M.
Perrone, M.
Petralia, E.
Pietrodangelo, A.
Pillon, S.
Pokorna, P.
Prati, P.
Salameh, D.
Samara, C.
Samek, L.
Saraga, D.
Sauvage, S.
Schaap, M.
Scotto, F.
Sega, K.
Siour, G.
Tauler, R.
Valli, G.
Vecchi, R.
Venturini, E.
Vestenius, M.
Waked, A.
Yubero, E.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Belis, C.A.
Pernigotti, D.
Pirovano, G.
Favez, O.
Jaffrezo, J.L.
Kuenen, J.
Denier van Der Gon, H.
Reizer, M.
Riffault, V.
Alleman, L.Y.
Almeida, M.
Amato, F.
Angyal, A.
Argyropoulos, G.
Bande, S.
Beslic, I.
Besombes, J.-L.
Bove, M.C.
Brotto, P.
Calori, G.
Cesari, D.
Colombi, C.
Contini, D.
De Gennaro, G.
Di Gilio, A.
Diapouli, E.
El Haddad, I.
Elbern, H.
Eleftheriadis, K.
Ferreira, J.
Vivanco, M. Garcia
Gilardoni, S.
Golly, B.
Hellebust, S.
Hopke, P.K.
Izadmanesh, Y.
Jorquera, H.
Krajsek, K.
Kranenburg, R.
Lazzeri, P.
Lenartz, F.
Lucarelli, F.
Maciejewska, K.
Manders, A.
Manousakas, M.
Masiol, M.
Mircea, M.
Mooibroek, D.
Nava, S.
Oliveira, D.
Paglione, M.
Pandolfi, M.
Perrone, M.
Petralia, E.
Pietrodangelo, A.
Pillon, S.
Pokorna, P.
Prati, P.
Salameh, D.
Samara, C.
Samek, L.
Saraga, D.
Sauvage, S.
Schaap, M.
Scotto, F.
Sega, K.
Siour, G.
Tauler, R.
Valli, G.
Vecchi, R.
Venturini, E.
Vestenius, M.
Waked, A.
Yubero, E.
dc.subject.por.fl_str_mv Source apportionment
PM10
Receptor models
Chemical transport models
Intercomparison
Lens
topic Source apportionment
PM10
Receptor models
Chemical transport models
Intercomparison
Lens
description In this study, the performance of two types of source apportionment models was evaluated by assessing the results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 (Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre-established acceptability criteria. By involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those measured directly at the source contributed to corroborate the consistency of the tested model results. The most commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross validating the results of these two families of models.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01T00:00:00Z
2020-01
2023-04-18T15:38:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/37185
url http://hdl.handle.net/10773/37185
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2590-1621
10.1016/j.aeaoa.2019.100053
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137731845029888